scholarly journals Gradient estimates for an orthotropic nonlinear diffusion equation

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pierre Bousquet ◽  
Lorenzo Brasco ◽  
Chiara Leone ◽  
Anna Verde

Abstract We consider a quasilinear degenerate parabolic equation driven by the orthotropic p-Laplacian. We prove that local weak solutions are locally Lipschitz continuous in the spatial variable, uniformly in time.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sujun Weng

AbstractWe study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)+\alpha (x,t)\nabla A(u) \bigr)+f(u,x,t). $$ u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . We assume that $A'(s)=a(s)\geq 0$ A ′ ( s ) = a ( s ) ≥ 0 , $A(s)$ A ( s ) is a strictly increasing function, $A(0)=0$ A ( 0 ) = 0 , $b(x,t)\geq 0$ b ( x , t ) ≥ 0 , and $\alpha (x,t)\geq 0$ α ( x , t ) ≥ 0 . If $$ b(x,t)=\alpha (x,t)=0,\quad (x,t)\in \partial \Omega \times [0,T], $$ b ( x , t ) = α ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × [ 0 , T ] , then we prove the stability of weak solutions without the boundary value condition.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wenbin Xu

AbstractConsider a double degenerate parabolic equation arising from the electrorheological fluids theory and many other diffusion problems. Let $v_{\varepsilon }$ v ε be the viscous solution of the equation. By showing that $|\nabla v_{\varepsilon }|\in L^{\infty }(0,T; L_{\mathrm{loc}}^{p(x)}(\Omega ))$ | ∇ v ε | ∈ L ∞ ( 0 , T ; L loc p ( x ) ( Ω ) ) and $\nabla v_{\varepsilon }\rightarrow \nabla v$ ∇ v ε → ∇ v almost everywhere, the existence of weak solutions is proved by the viscous solution method. By imposing some restriction on the nonlinear damping terms, the stability of weak solutions is established. The innovation lies in that the homogeneous boundary value condition is substituted by the condition $a(x)| _{x\in \partial \Omega }=0$ a ( x ) | x ∈ ∂ Ω = 0 , where $a(x)$ a ( x ) is the diffusion coefficient. The difficulties come from the nonlinearity of $\vert {\nabla v} \vert ^{p(x)-2}$ | ∇ v | p ( x ) − 2 as well as the nonlinearity of $|v|^{\alpha (x)}$ | v | α ( x ) .


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Sujun Weng

Abstract The well-posedness of weak solutions to a double degenerate evolutionary $p(x)$ p ( x ) -Laplacian equation $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)\bigr), $$ u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) ) , is studied. It is assumed that $b(x,t)| _{(x,t)\in \varOmega \times [0,T]}>0$ b ( x , t ) | ( x , t ) ∈ Ω × [ 0 , T ] > 0 but $b(x,t) | _{(x,t)\in \partial \varOmega \times [0,T]}=0$ b ( x , t ) | ( x , t ) ∈ ∂ Ω × [ 0 , T ] = 0 , $A'(s)=a(s)\geq 0$ A ′ ( s ) = a ( s ) ≥ 0 , and $A(s)$ A ( s ) is a strictly monotone increasing function with $A(0)=0$ A ( 0 ) = 0 . A weak solution matching up with the double degenerate parabolic equation is introduced. The existence of weak solution is proved by a parabolically regularized method. The stability theorem of weak solutions is established independent of the boundary value condition. In particular, the initial value condition is satisfied in a wider generality.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Huashui Zhan

AbstractThe initial-boundary value problem of a degenerate parabolic equation arising from double phase convection is considered. Let $a(x)$ a ( x ) and $b(x)$ b ( x ) be the diffusion coefficients corresponding to the double phase respectively. In general, it is assumed that $a(x)+b(x)>0$ a ( x ) + b ( x ) > 0 , $x\in \overline{\Omega }$ x ∈ Ω ‾ and the boundary value condition should be imposed. In this paper, the condition $a(x)+b(x)>0$ a ( x ) + b ( x ) > 0 , $x\in \overline{\Omega }$ x ∈ Ω ‾ is weakened, and sometimes the boundary value condition is not necessary. The existence of a weak solution u is proved by parabolically regularized method, and $u_{t}\in L^{2}(Q_{T})$ u t ∈ L 2 ( Q T ) is shown. The stability of weak solutions is studied according to the different integrable conditions of $a(x)$ a ( x ) and $b(x)$ b ( x ) . To ensure the well-posedness of weak solutions, the classical trace is generalized, and that the homogeneous boundary value condition can be replaced by $a(x)b(x)|_{x\in \partial \Omega }=0$ a ( x ) b ( x ) | x ∈ ∂ Ω = 0 is found for the first time.


Sign in / Sign up

Export Citation Format

Share Document