outsourcing algorithm
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lingzan Yu ◽  
Yanli Ren ◽  
Guorui Feng ◽  
Xinpeng Zhang

QR and LU factorizations are two basic mathematical methods for decomposition and dimensionality reduction of large-scale matrices. However, they are too complicated to be executed for a limited client because of big data. Outsourcing computation allows a client to delegate the tasks to a cloud server with powerful resources and therefore greatly reduces the client’s computation cost. However, the previous methods of QR and LU outsourcing factorizations need multiple interactions between the client and cloud server or have low accuracy and efficiency in large-scale matrix applications. In this paper, we propose a noninteractive and efficient outsourcing algorithm of large-scale QR and LU factorizations. The proposed scheme is based on the specific perturbation method including a series of consecutive and sparse matrices, which can be used to protect the original matrix and obtain the results of factorizations. The generation and inversion of sparse matrix has small workloads on the client’s side, and the communication cost is also small since the client does not need to interact with the cloud server in the outsourcing algorithms. Moreover, the client can verify the outsourcing result with a probability of approximated to 1. The experimental results manifest that as for the client, the proposed algorithms reduce the computational overhead of direct computation successfully, and it is most efficient compare with the previous ones.


Author(s):  
Malay Kumar ◽  
Manu Vardhan

The growth of the cloud computing services and its proliferation in business and academia has triggered enormous opportunities for computation in third-party data management settings. This computing model allows the client to outsource their large computations to cloud data centers, where the cloud server conducts the computation on their behalf. But data privacy and computational integrity are the biggest concern for the client. In this article, the authors attempt to present an algorithm for secure outsourcing of a covariance matrix, which is the basic building block for many automatic classification systems. The algorithm first performs some efficient transformation to protect the privacy and verify the computed result produced by the cloud server. Further, an analytical and experimental analysis shows that the algorithm is simultaneously meeting the design goals of privacy, verifiability and efficiency. Also, found that the proposed algorithm is about 7.8276 times more efficient than the direct implementation.


Author(s):  
Xiulan Li ◽  
Jingguo Bi ◽  
Chengliang Tian ◽  
Hanlin Zhang ◽  
Jia Yu ◽  
...  

2020 ◽  
Vol 38 (5) ◽  
pp. 6445-6455
Author(s):  
Malay Kumar ◽  
Vaibhav Mishra ◽  
Anurag Shukla ◽  
Munendra Singh ◽  
Manu Vardhan

Author(s):  
Nedal Mohammed ◽  
Laman R. Sultan ◽  
Santosh Lomte

<p>One of a powerful application in the age of cloud computing is the outsourcing of scientific computations to cloud computing which makes cloud computing a very powerful computing paradigm, where the customers with limited computing resource and storage devices can outsource the sophisticated computation workloads into powerful service providers. One of scientific computations problem is Two-Point Boundary Value Problems(BVP) is a basic engineering and scientific problem, which has application in various domains. In this paper, we propose a privacy-preserving, verifiable and efficient algorithm for Two-Point Boundary Value Problems in outsourcing paradigm. We implement the proposed schema on the customer side laptop and using AWS compute domain elastic compute cloud (EC2) for the cloud side.</p>


2018 ◽  
Vol 12 (2) ◽  
pp. 1-25 ◽  
Author(s):  
Malay Kumar ◽  
Manu Vardhan

The growth of the cloud computing services and its proliferation in business and academia has triggered enormous opportunities for computation in third-party data management settings. This computing model allows the client to outsource their large computations to cloud data centers, where the cloud server conducts the computation on their behalf. But data privacy and computational integrity are the biggest concern for the client. In this article, the authors attempt to present an algorithm for secure outsourcing of a covariance matrix, which is the basic building block for many automatic classification systems. The algorithm first performs some efficient transformation to protect the privacy and verify the computed result produced by the cloud server. Further, an analytical and experimental analysis shows that the algorithm is simultaneously meeting the design goals of privacy, verifiability and efficiency. Also, found that the proposed algorithm is about 7.8276 times more efficient than the direct implementation.


Sign in / Sign up

Export Citation Format

Share Document