seepage factor
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingkun Pang ◽  
Tianjun Zhang ◽  
Yi Guo ◽  
Lei Zhang

AbstractThe initiation process of the mine water inrush accident, the essence of this process is the sudden change of the seepage state of the broken coal medium under pressure and the instability of the skeleton. In order to study the re-crushing mechanism and seepage characteristics of the broken coal medium under load, a set of three-axis seepage system was designed independently. Using the steady-state infiltration method, multiple flow factors under different particle size combinations and different stress conditions of the broken coal medium were obtained. The results of the study indicate: in one hand, the reduction of the porosity of the broken coal medium will cause the flow channel to be rebuilt, and the sudden change of flow rate will directly lead to the non-Darcian flow behavior. The early stage of compaction mainly affects the permeability k value, and the later stage of compaction mainly affects the non-Darcian β value; On the other hand, the seepage throat in the broken coal medium may have a sharp increase in its flow rate, leading to a sudden change in the flow pattern. The critical Reynolds number is also used to determine whether non-Darcian flow is formed, and its value in the water inrush system is about 40–133; at the same time, the non-Darcian flow in the broken coal medium conforms to the Forchheimer-type flow law. By analyzing the dependence relationship between factors, a seepage factor representation algebraic relationship suitable for Forchheimer type non-Darcian flow of broken coal medium is given, which can be used as a calculation basis in the prevention and treatment of mine water inrush accidents.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhong Zhou ◽  
Wenyuan Gao ◽  
Zhuangzhuang Liu ◽  
Chengcheng Zhang

Compared with ordinary tunnels, the influence analysis of underwater tunnel adjacent constructions is more complicated. At present, the empirical method used to divide the influence zone of the tunnel adjacent constructions has great uncertainty. So it is of great significance for actual construction and design to determine the influence zone accurately according to theoretical calculations. In this paper, based on the Hoek–Brown nonlinear failure criterion of rock mass and taking seepage factor into account, the stress state of rock mass around the underwater tunnel adjacent constructions can be deduced by elastoplastic theory. Then combined with the concept of “loose zone-bearing zone”, the influence zone division method of underwater tunnel adjacent constructions is proposed, and it is applied to the analysis of engineering examples. Through the deduced theoretical formulas, the influence zone of underwater tunnel adjacent construction can be divided into extensively strong, strong, relatively strong, weak, and noninfluence zones. Corresponding the influence zones with the risk levels in the code, different control measures are adopted for different risk levels, which can provide certain guidance for the design and construction of tunnel in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document