production rate analysis
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 522-530 ◽  
Author(s):  
Stian Almenningen ◽  
Per Fotland ◽  
Martin A. Fernø ◽  
Geir Ersland

Summary Sedimentary methane hydrates contain a vast amount of untapped natural gas that can be produced through pressure depletion. Several field pilots have proved the concept with days to weeks of operation, but the longer-term response remains uncertain. This paper investigates the parameters affecting the rate of gas recovery from methane-hydrate-bearing sediments. The recovery of methane gas from hydrate dissociation through pressure depletion was studied at different initial hydrate saturations and different constant production pressures in cylindrical sandstone cores. Core-scale dissociation patterns were mapped with magnetic resonance imaging (MRI), and pore-scale dissociation events were visualized in a high-pressure micromodel. Key findings from the gas-production-rate analysis are that the maximum rate of recovery is only to a small extent affected by the magnitude of the pressure reduction below the dissociation pressure, and that the hydrate saturation directly affects the rate of recovery, where intermediate hydrate saturations (0.30 to 0.50) give the highest initial recovery rate. These results are of interest to anyone who evaluates the production performance of sedimentary hydrate accumulations and demonstrate how important accurate saturation estimates are to prediction of both the initial rate of gas recovery and the ultimate-recovery efficiency.


Sign in / Sign up

Export Citation Format

Share Document