scholarly journals Production rate analysis on ice slurry generator with pump speed variation and ice slurry thermal storage for building

2019 ◽  
Author(s):  
Fajri Asfi Rayhan ◽  
Achmad Rizaldy ◽  
Yanuar ◽  
Agus Sunjarianto Pamitran
SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 522-530 ◽  
Author(s):  
Stian Almenningen ◽  
Per Fotland ◽  
Martin A. Fernø ◽  
Geir Ersland

Summary Sedimentary methane hydrates contain a vast amount of untapped natural gas that can be produced through pressure depletion. Several field pilots have proved the concept with days to weeks of operation, but the longer-term response remains uncertain. This paper investigates the parameters affecting the rate of gas recovery from methane-hydrate-bearing sediments. The recovery of methane gas from hydrate dissociation through pressure depletion was studied at different initial hydrate saturations and different constant production pressures in cylindrical sandstone cores. Core-scale dissociation patterns were mapped with magnetic resonance imaging (MRI), and pore-scale dissociation events were visualized in a high-pressure micromodel. Key findings from the gas-production-rate analysis are that the maximum rate of recovery is only to a small extent affected by the magnitude of the pressure reduction below the dissociation pressure, and that the hydrate saturation directly affects the rate of recovery, where intermediate hydrate saturations (0.30 to 0.50) give the highest initial recovery rate. These results are of interest to anyone who evaluates the production performance of sedimentary hydrate accumulations and demonstrate how important accurate saturation estimates are to prediction of both the initial rate of gas recovery and the ultimate-recovery efficiency.


2021 ◽  
Author(s):  
Yamal Askoul ◽  
◽  
Gavin JG Sibbald ◽  
Art Hooker ◽  
John Banks ◽  
...  

The necessity of knowing formation pressure is crucial to classifying pressure regimes for better understanding in well planning and to de-risk potential abnormal pressure conditions before any future field development wells are drilled, consequently minimizing operational cost. Wireline formation pressure testing has been a useful and reliable technology, that has evolved to confront the challenge of ultra-low permeable reservoir conditions by innovating and improving pump capability, accuracy in pressure measurements, automated control and the implantation of Formation Rate Analysis (FRA) intertwined with an Artificial Intelligent tool. In any pressure testing, the key factor is to be able to withdraw volume from the formation to generate a disturbance on formation pore pressure that a pressure gauge can measure. In the past this has been a difficult task in ultra-low permeable zones. The new generation of wireline tools are capable of withdrawing volume from ultra-low permeable reservoirs, with mobilities lower than 0.01mD/cP. This has been made possible by utilizing control of the pump speed down to 0.0003cc/s which then gives the operator the ability to test ultra-tight formations without the need for inflatable packers. By pulling down the pressure at an extremely low rate and using Artificial Intelligence to control the rate by knowing the formation rate, a proportional amount of volume can be extracted without calling it a tight test. During the operation by observing the rate, and making sure the pump is not oscillating, which indicates the formation rate is lower than the lowest rate the pump can withdraw, the test can be validated for formation flow and the pressure transient of the build – up can be analysed to confirm that at least spherical flow is observed. Once reservoir communication has been confirmed and by analysing drawdown and build-up pressure versus volume withdrawn and implementing the FRA equation, the reservoir pressure can be back calculated by considering isothermal compressibility and FRA slope. This paper highlights the best technical approach to quality check and quality control these tests, showing examples of various wells, where the technique has been used to predict a formation pressure, which can be used for further use for field development, drilling optimisation and production profiles. These pressures would never have been possible using static rates and volume.


Sign in / Sign up

Export Citation Format

Share Document