offshore structure design
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 1)

2019 ◽  
Vol 59 (2) ◽  
pp. 789 ◽  
Author(s):  
Matt Keys

Most offshore structure design codes focus on setting appropriate safety factors to achieve an acceptable annual level of risk. Recent work by Atkins SNC-Lavalin, together with a large number of operators in Australian waters and the North Sea, has discovered that a large number of aging assets are implementing a demanning requirement to limit the risk of platform collapse to personnel, due to changes in loading or degradation of the structure. This work has shown there are two risk scenarios that should drive this requirement. The first scenario which is intended by the codes in limiting the overall annual risk. The second is to limit the collapse risk associated with a known forecast storm, as the level of risk from helicopter demanning is much lower. For all the older offshore fixed and permanently mooring floating structures assessed for a risk level considered acceptable for a forecast storm, this risk level would govern the sea-state demanning criteria. For recently installed facilities that are compliant with current standards, the findings were the same: that all facilities should have a demanning requirement. The level of this demanning sea-state limit has been shown to be lower than expected and is likely to occur only once in the asset’s life; therefore, the cost implications of implementing demanning procedures are minor. This paper presents the basis and range of findings for calculating the risks associated with an annual occurrence and an ‘in a forecast storm’ risk. Further, this paper proposes acceptable demanning limits for facilities designed to current and historical design codes.


2018 ◽  
Vol 149 ◽  
pp. 71-82
Author(s):  
Lawrence Charlebois ◽  
Robert Frederking ◽  
G.W. Timco ◽  
David Watson ◽  
Martin Richard

Author(s):  
Elzbieta Maria Bitner-Gregersen ◽  
Lars Ingolf Eide ◽  
Torfinn Hørte ◽  
Rolf Skjong

Author(s):  
Zong Woo Geem

The dam is the wall that holds the water in, and the operation of multiple dams is complicated decisionmaking process as an optimization problem (Oliveira & Loucks, 1997). Traditionally researchers have used mathematical optimization techniques with linear programming (LP) or dynamic programming (DP) formulation to find the schedule. However, most of the mathematical models are valid only for simplified dam systems. Accordingly, during the past decade, some meta-heuristic techniques, such as genetic algorithm (GA) and simulated annealing (SA), have gathered great attention among dam researchers (Chen, 2003) (Esat & Hall, 1994) (Wardlaw & Sharif, 1999) (Kim, Heo & Jeong, 2006) (Teegavarapu & Simonovic, 2002). Lately, another metaheuristic algorithm, harmony search (HS), has been developed (Geem, Kim & Loganathan, 2001) (Geem, 2006a) and applied to various artificial intelligent problems, such as music composition (Geem & Choi, 2007) and Sudoku puzzle (Geem, 2007). The HS algorithm has been also applied to various engineering problems such as structural design (Lee & Geem, 2004), water network design (Geem, 2006b), soil stability analysis (Li, Chi & Chu, 2006), satellite heat pipe design (Geem & Hwangbo, 2006), offshore structure design (Ryu, Duggal, Heyl & Geem, 2007), grillage system design (Erdal & Saka, 2006), and hydrologic parameter estimation (Kim, Geem & Kim, 2001). The HS algorithm could be a competent alternative to existing metaheuristics such as GA because the former overcame the drawback (such as building block theory) of the latter (Geem, 2006a). To test the ability of the HS algorithm in multiple dam operation problem, this article introduces a HS model, and applies it to a benchmark system, then compares the results with those of the GA model previously developed.


Author(s):  
W. Feng ◽  
Z. M. Shi ◽  
L. M. Liu

Ice force is an important factor to be taken into account for offshore structures in cold region, and the calculation method of the ice force is meaningful for the offshore structure design. Cone is now used as optimal ice-resistant structure because it can cause bending failure of the ice sheet. The interaction between ice sheet and conical structure is studied in this paper and Croasdale’s model is modified based on the field observations. The newly built model separates the ice sheet into emersed part and floating part, and the equilibrium analyses are carried out respectively. The bending moment distribution of the ice sheet is analyzed to determine the position of bending failure, which serves as a supplementary restriction. Analytic solution of ice force on conical structure is got and it is verified by the experimental data of previous researches.


Sign in / Sign up

Export Citation Format

Share Document