bending failure
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 48)

H-INDEX

9
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7792
Author(s):  
Andrea Zanichelli ◽  
Angélica Colpo ◽  
Leandro Friedrich ◽  
Ignacio Iturrioz ◽  
Andrea Carpinteri ◽  
...  

In this paper, a novel implementation of the Lattice Discrete Element Method (LDEM) is proposed: in particular, the LDEM is implemented in the Ansys LS-DYNA finite element code. Such an implementation is employed to evaluate the fracture behaviour of sandwich panels under bending. First, the novel hybrid model proposed is validated by simulating some three-point bending experimental tests carried out at the University of Parma, and then it is used to model the fracture behaviour of sandwich panels under four-point bending. Failure mechanisms, damage locations, and load-deflection curves are numerically determined by employing such a novel model, and the results show a good agreement with the available experimental findings.


2021 ◽  
Author(s):  
Aleksandra Simakina ◽  
Petr Zvyagin ◽  
Mikhail Drepin

Abstract Experiments with model ice are usually carried out for preliminary assessment of ice qualities of designed offshore structures. Despite the fact that properties of model ice across artificial floe are constant, sometimes various experimental results can be explained not only by measurement errors. The paper describes various positions of breaking points in a number of model experiments with an ice beam flexural failure. To explain the observed effect, the article suggests the hypothesis on heterogeneity of elastic modulus of an ice floe. The article considers a problem of possible influence of the area of heterogeneity on the position of an ice beam breaking point. Thus, the models of a cantilever beam and a plane lying on an elastic foundation with inconstant Young’s modulus are suggested. These models in form of their approximations by finite differences are applied for making numerical simulations in order to investigate the problem. With the numerically obtained solutions of a cantilever beam and a plane on an elastic foundation with employed inhomogeneity of elastic modulus, the study observed noticeable change in the position of the breaking point when such inhomogeneity occurred close to the contact area.


2021 ◽  
Vol 11 (12) ◽  
pp. 5356
Author(s):  
Jing Li ◽  
Lizhong Jiang ◽  
Hong Zheng ◽  
Liqiang Jiang ◽  
Lingyu Zhou

A bolt-connected precast reinforced concrete deep beam (RDB) is proposed as a lateral resisting component that can be used in frame structures to resist seismic loads. RDB can be installed in the steel frame by connecting to the frame beam with only high-strength bolts, which is different from the commonly used cast-in-place RC walls. Two 1/3 scaled specimens with different height-to-length ratios were tested to obtain their seismic performance. The finite element method is used to model the seismic behavior of the test specimens, and parametric analyses are conducted to study the effect on the height-to-length ratio, the strength of the concrete and the height-to-thickness ratio of RDBs. The experimental and numerical results show that the RDB with a low height-to-length ratio exhibited a shear–bending failure mode, while the RDB with a high height-to-length ratio failed with a shear-dominated failure mode. By comparing the RDB with a height-to-length ratio of 2.0, the ultimate capacity, initial stiffness and ductility of the RDB with a height-to-length ratio of 0.75 increased by 277%, 429% and 141%, respectively. It was found that the seismic performance of frame structures could be effectively adjusted by changing the height-to-length ratio and length-to-thickness of the RDB. The RDB is a desirable lateral-resisting component for existing and new frame buildings.


2021 ◽  
Vol 10 (6) ◽  
pp. e10410615362
Author(s):  
Rudá Aranha ◽  
Laura Hecker de Carvalho ◽  
Wanderley Ferreira de Amorim Junior

The aim of this work is to analyze resin flow during RTM manufacturing of GFRP composites containing embedded impermeable inserts. High-density polyethylene inserts were embedded in the composites during processing via vacuum assisted resin transfer molding (RTM). The processing station plate was assembled so that digital image analysis of flow during and after processing could be taken. Three-point bending test specimens were cutout from the plates and their fractured surfaces were analyzed by optical fractography.  Results indicate the inserts to block transverse resin flow making it difficult to wet the fibers thoroughly, which led to non-uniform plate thickness.  Resin rich regions near the sides of the inserts were observed. Three-point bending failure mode analysis showed the occurrence of fiber delamination by type II shear stress, detachment between the fiber/matrix interface and the insert, and fracture of the composite to proceed by crack propagation through the resin rich region.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2632
Author(s):  
Yafeng Hu ◽  
Yang Wei ◽  
Si Chen ◽  
Yadong Yan ◽  
Weiyao Zhang

A timber–lightweight−concrete (TLC) composite beam connected with a ductile connector in which the ductile connector is made of a stainless−steel bolt anchored with nuts at both ends was proposed. The push−out results and bending performance of the TLC composite specimens were investigated by experimental testing. The push−out results of the shear specimens show that shear–slip curves exhibit good ductility and that their failure can be attributed to bolt buckling accompanied by lightweight concrete cracking. Through the bending tests of ten TLC composite beams and two contrast (pure timber) beams, the effects of different bolt diameters on the strengthening effect of the TLC composite beams were studied. The results show that the TLC composite beams and contrast timber beams break on the timber fiber at the lowest edge of the TLC composite beam, and the failure mode is attributed to bending failure, whereas the bolt connectors and lightweight concrete have no obvious breakage; moreover, the ductile bolt connectors show a good connection performance until the TLC composite beams fail. The ultimate bearing capacities of the TLC composite beams increase 2.03–3.5 times compared to those of the contrast beams, while the mid-span maximum deformation decrease nearly doubled.


Sign in / Sign up

Export Citation Format

Share Document