carbon stock density
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2019 ◽  
Vol 29 (2) ◽  
pp. 13-19
Author(s):  
A. Poudel ◽  
H. L. Shrestha ◽  
R. M. Bajracharya

Carbon sequestration in terrestrial ecosystems is gaining a global attention, including Nepal, to address the issues of climate change. Since, the quantification of carbon stock under different land use systems with focus on both biomass and soil profile is lacking, objective of this paper is to quantify carbon stock in biomass and in soil profile under different land use regimes, namely community forest, leasehold forest and agricultural land of Chitwan district. The carbon stock in biomass was calculated using the standard allometric equations, and Dry Combustion Method was used to determine the Soil Organic Carbon (SOC). The carbon content in above ground tree biomass (AGTB) was found to be higher (81.25 t/ha) in community forest than in leasehold forest (80.09 t/ha). The carbon stock in above ground sapling biomass (AGSB) was calculated only for the community forest, and was found to be 3. 67 t/ha. Similarly, the density of leaf litter, herbs and grasses (LHG) was also found to be higher (9. 25 t/ha) in the community forest in comparison to leasehold forest (6.45 t/ha). Further, the root carbon stock density was also higher (16.25 t/ha) in the community forest than in the leasehold forest (16.02 t/ha). However, the SOC density was highest in the agricultural land (73.42t/ha) followed by the community forest (66.38 t/ha)and the leasehold forest (52. 62 t/ha). Overall, the carbon stock was highest in the community forest (176.8 t/ha) then in leasehold forest (155.18 t/ha) followed by the agricultural land (73.42 t/ha). Hence, this study shows that well managed community forest can contribute significantly in offsetting global carbon emission.


2016 ◽  
Vol 26 (1) ◽  
pp. 24-31 ◽  
Author(s):  
H. P. Pandey ◽  
M. Bhusal

Estimation of total biomass and carbon sequestration in any forest is crucial as it gives ecological and economic benefits through various environmental services. With an aim to quantify the carbon stock densities in the two different ecological regions–the Hills and the Terai, two Community Forests (CFs) having the dominance of Shorea robusta were selected from Gorkha (in the Hills) and Chitwan (in the Terai) districts for the purpose of the study. Systematic random sampling with 1% sampling intensity was used to collect necessary data. The total carbon stock in the CFs of the Hills and the Terai were found to be 234.54 t ha-1 and 479.29 t ha-1, respectively. The biomass carbon stock density in the CF of the Terai was found to be higher (384.20 t ha-1) than the one in the Hills (123.15 t ha-1). Carbon densities of different carbon pools such as tree; sapling; leaf litter, grass and herbs were significantly higher (P<0.05) in the Terai than in the Hill forest whereas dead wood and stumps and the soil organic carbon density were found to be not significantly different in these regions. Similarly, the highest amount of soil organic carbon (SOC) was found in the uppermost soil horizon in the forests of both the regions. These results revealed that the biomass carbon stock density was higher in the Terai S. robusta forest than in the Hill S. robusta forest. However, the SOC obtained was in inverse relation to that of the biomass carbon stock in both the ecological regions. It would not be biased if different ecological regions with similar forest types are intervened with different management strategies for having more carbon stocks and for the conservation of biodiversity in the days to come.Banko JanakariA Journal of Forestry Information for NepalVol. 26, No. 1, Page: 24-31, 2016


Author(s):  
Abdullahi Jibrin ◽  
Sule Mohammed Zubairu ◽  
Aishatu Abdulkadir ◽  
Sakoma J Kaura ◽  
Amos Bitrus Baminda

This study provides a preliminary assessment of the biophysical potential for carbon sequestration. Quantification of carbon stock and estimation of carbon sequestration potential was carried out in the Kpashimi Forest Reserve, Niger state, Nigeria. Carbon stock was measured in the six vegetation communities existing in the study area. Forty-eight randomly selected 20 x 20 metre quadrats were established wherein data was collected from the main forest carbon pools; including above ground tree, below ground root, undergrowth (shrub grasses), dead wood, litter and soil organic carbon. Biomass of the respective pools was quantified by destructive sampling and use of allometric equations. Thereafter, biomass values were converted to carbon stock equivalent. Four satellite imageries TM, SPOT, ETM+, and NIGERIASAT-1 of 1987, 1994, 2001 and 2007 respectively were used to estimate vegetation cover and carbon stock change over 20 years. The results showed that average carbon stock density (Mg C/ha) of the vegetation communities was in the decreasing order; Riparian forest (123.58 ± 9.1), Savanna woodland (97.71 ± 8.2), Degraded forest (62.92 ± 6.1), Scrubland (36.28 ± 4.1), Grassland (18.22 ± 5.1), and bare surface (9.31 ± 3.1). Deforestation and forest degradation between 1987 and 2007 have resulted in emission of 240.2 Mg (ton) C ha-1 at an annual rate of 12.01 Mg C ha-1. This suggests that the study site has carbon sequestration potential of 240.2 Mg C ha-1 based on its capacity to increase carbon stock through restoration; back to speculated 1987 levels and even higher. Thus, the study recommends the need to analyse carbon offset project feasibility in the study area.


2013 ◽  
Vol 8 (1) ◽  
Author(s):  
Natasha S Ribeiro ◽  
Céu N Matos ◽  
Isabel R Moura ◽  
Robert A Washington-Allen ◽  
Ana I Ribeiro

Sign in / Sign up

Export Citation Format

Share Document