scholarly journals Equal values of certain partition functions via Diophantine equations

2021 ◽  
Vol 7 (4) ◽  
Author(s):  
Szabolcs Tengely ◽  
Maciej Ulas

AbstractLet $$A\subset \mathbb {N}_{+}$$ A ⊂ N + and by $$P_{A}(n)$$ P A ( n ) denotes the number of partitions of an integer n into parts from the set A. The aim of this paper is to prove several result concerning the existence of integer solutions of Diophantine equations of the form $$P_{A}(x)=P_{B}(y)$$ P A ( x ) = P B ( y ) , where A, B are certain finite sets.

2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


2018 ◽  
Vol 36 (3) ◽  
pp. 173-192
Author(s):  
Ahmet Tekcan ◽  
Seyma Kutlu

Let $k\geq 1$ be an integer and let $P=k+2,Q=k$ and $D=k^{2}+4$. In this paper, we derived some algebraic properties of quadratic ideals $I_{\gamma}$ and indefinite quadratic forms $F_{\gamma }$ for quadratic irrationals $\gamma$, and then we determine the set of all integer solutions of the Diophantine equation $F_{\gamma }^{\pm k}(x,y)=\pm Q$.


1987 ◽  
Vol 105 ◽  
pp. 39-47 ◽  
Author(s):  
R. A. Mollin

Many authors have studied the relationship between nontrivial class numbers h(n) of real quadratic fields and the lack of integer solutions for certain diophantine equations. Most such results have pertained to positive square-free integers of the form n = l2 + r with integer >0, integer r dividing 4l and — l<r<l. For n of this form, is said to be of Richaud-Degert (R-D) type (see [3] and [8]; as well as [2], [6], [7], [12] and [13] for extensions and generalizations of R-D types.)


2019 ◽  
Vol 30 (08) ◽  
pp. 1335-1361
Author(s):  
Özlem Salehi ◽  
Abuzer Yakaryılmaz ◽  
A. C. Cem Say

We present several new results and connections between various extensions of finite automata through the study of vector automata and homing vector automata. We show that homing vector automata outperform extended finite automata when both are defined over [Formula: see text] integer matrices. We study the string separation problem for vector automata and demonstrate that generalized finite automata with rational entries can separate any pair of strings using only two states. Investigating stateless homing vector automata, we prove that a language is recognized by stateless blind deterministic real-time version of finite automata with multiplication iff it is commutative and its Parikh image is the set of nonnegative integer solutions to a system of linear homogeneous Diophantine equations.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S &sube; {xi &middot; xj = xk : i, j, k &isin; {1, . . . , n}} &cup; {xi + 1 = xk : i, k &isin;{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn &le; f (2n). We prove:&nbsp;&nbsp; (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M &sube; N has a finite-fold Diophantine representation, then M is computable.


Author(s):  
Apoloniusz Tyszka

We prove: (1) the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable, (2) the set of all Diophantine equations which have at most finitely many solutions in positive integers is not recursively enumerable, (3) the set of all Diophantine equations which have at most finitely many integer solutions is not recursively enumerable, (4) analogous theorems hold for Diophantine equations D(x1, &hellip;, xp) = 0, where p &isin; N\{0} and for every i &isin; {1, &hellip;, p} the polynomial D(x1, &hellip;, xp) involves a monomial M with a non-zero coefficient such that xi divides M, (5) the set of all Diophantine equations which have at most k variables (where k&nbsp;&ge; 9) and at most finitely many solutions in non-negative integers is not recursively enumerable.


2010 ◽  
Vol 06 (02) ◽  
pp. 219-245 ◽  
Author(s):  
JEFFREY C. LAGARIAS

This paper considers the cyclic system of n ≥ 2 simultaneous congruences [Formula: see text] for fixed nonzero integers (r, s) with r > 0 and (r, s) = 1. It shows there are only finitely many solutions in positive integers qi ≥ 2, with gcd (q1q2 ⋯ qn, s) = 1 and obtains sharp bounds on the maximal size of solutions for almost all (r, s). The extremal solutions for r = s = 1 are related to Sylvester's sequence 2, 3, 7, 43, 1807,…. If the positivity condition on the integers qi is dropped, then for r = 1 these systems of congruences, taken ( mod |qi|), have infinitely many solutions, while for r ≥ 2 they have finitely many solutions. The problem is reduced to studying integer solutions of the family of Diophantine equations [Formula: see text] depending on three parameters (r, s, m).


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S &sube; {xi &middot; xj = xk : i, j, k &isin; {1, . . . , n}} &cup; {xi + 1 = xk : i, k &isin;{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn &le; f (2n). We prove:&nbsp;&nbsp; (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M &sube; N has a finite-fold Diophantine representation, then M is computable.


2021 ◽  
Vol 27 (3) ◽  
pp. 113-118
Author(s):  
Yangcheng Li ◽  

It is well known that the number P_k(x)=\frac{x((k-2)(x-1)+2)}{2} is called the x-th k-gonal number, where x\geq1,k\geq3. Many Diophantine equations about polygonal numbers have been studied. By the theory of Pell equation, we show that if G(k-2)(A(p-2)a^2+2Cab+B(q-2)b^2) is a positive integer but not a perfect square, (2A(p-2)\alpha-(p-4)A + 2C\beta+2D)a + (2B(q-2)\beta-(q-4)B+2C\alpha+2E)b>0, 2G(k-2)\gamma-(k-4)G+2H>0 and the Diophantine equation \[AP_p(x)+BP_q(y)+Cxy+Dx+Ey+F=GP_k(z)+Hz\] has a nonnegative integer solution (\alpha,\beta,\gamma), then it has infinitely many positive integer solutions of the form (at + \alpha,bt + \beta,z), where p, q, k \geq 3 and p,q,k,a,b,t,A,B,G\in\mathbb{Z^+}, C,D,E,F,H\in\mathbb{Z}.


Sign in / Sign up

Export Citation Format

Share Document