scholarly journals Fermat's Last Theorem: A Proof by Contradiction

Author(s):  
Benson Schaeffer

In this paper I offer an algebraic proof by contradiction of Fermat’s Last Theorem. Using an alternative to the standard binomial expansion, (a+b) n = a n + b Pn i=1 a n−i (a + b) i−1 , a and b nonzero integers, n a positive integer, I show that a simple rewrite of the Fermat’s equation stating the theorem, A p + B p = (A + B − D) p , A, B, D and p positive integers, D < A < B, p ≥ 3 and prime, entails the contradiction, A(B − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 A i−1−j (A + B − D) j−1 # + B(A − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 B i−1−j (A + B − D) j−1 # = 0, the sum of two positive integers equal to zero. This contradiction shows that the rewrite has no non-trivial positive integer solutions and proves Fermat’s Last Theorem. AMS 2020 subject classification: 11A99, 11D41 Diophantine equations, Fermat’s equation ∗The corresponding author. E-mail: [email protected] 1 1 Introduction To prove Fermat’s Last Theorem, it suffices to show that the equation A p + B p = C p (1In this paper I offer an algebraic proof by contradiction of Fermat’s Last Theorem. Using an alternative to the standard binomial expansion, (a+b) n = a n + b Pn i=1 a n−i (a + b) i−1 , a and b nonzero integers, n a positive integer, I show that a simple rewrite of the Fermat’s equation stating the theorem, A p + B p = (A + B − D) p , A, B, D and p positive integers, D < A < B, p ≥ 3 and prime, entails the contradiction, A(B − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 A i−1−j (A + B − D) j−1 # + B(A − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 B i−1−j (A + B − D) j−1 # = 0, the sum of two positive integers equal to zero. This contradiction shows that the rewrite has no non-trivial positive integer solutions and proves Fermat’s Last Theorem.

2006 ◽  
Vol 02 (02) ◽  
pp. 195-206 ◽  
Author(s):  
MICHAEL A. BENNETT ◽  
ALAIN TOGBÉ ◽  
P. G. WALSH

Bumby proved that the only positive integer solutions to the quartic Diophantine equation 3X4 - 2Y2 = 1 are (X, Y) = (1, 1),(3, 11). In this paper, we use Thue's hypergeometric method to prove that, for each integer m ≥ 1, the only positive integers solutions to the Diophantine equation (m2 + m + 1)X4 - (m2 + m)Y2 = 1 are (X,Y) = (1, 1),(2m + 1, 4m2 + 4m + 3).


2020 ◽  
Vol 14 (1) ◽  
pp. 139-142
Author(s):  
Sudhangshu B. Karmakar

AbstractAn elementary proof that the equation x2n + y2n = z2n can not have any non-zero positive integer solutions when n is an integer ≥ 2 is presented. To prove that the equation has no integer solutions it is first hypothesized that the equation has integer solutions. The absence of any integer solutions of the equation is justified by contradicting the hypothesis.


2019 ◽  
Vol 15 (05) ◽  
pp. 1069-1074 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let [Formula: see text] be a positive integer with [Formula: see text], and let [Formula: see text] be an odd prime. In this paper, by using certain properties of Pell’s equations and quartic diophantine equations with some elementary methods, we prove that the system of equations [Formula: see text] [Formula: see text] and [Formula: see text] has positive integer solutions [Formula: see text] if and only if [Formula: see text] and [Formula: see text] satisfy [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are positive integers. Further, if the above condition is satisfied, then [Formula: see text] has only the positive integer solution [Formula: see text]. By the above result, we can obtain the following corollaries immediately. (i) If [Formula: see text] or [Formula: see text], then [Formula: see text] has no positive integer solutions [Formula: see text]. (ii) For [Formula: see text], [Formula: see text] has only the positive integer solutions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].


Author(s):  
Ruiqin Fu ◽  
Hai Yang

Let [Formula: see text] be fixed positive integers such that [Formula: see text] is not a perfect square and [Formula: see text] is squarefree, and let [Formula: see text] denote the number of distinct prime divisors of [Formula: see text]. Let [Formula: see text] denote the least solution of Pell equation [Formula: see text]. Further, for any positive integer [Formula: see text], let [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text]. In this paper, using the basic properties of Pell equations and some known results on binary quartic Diophantine equations, a necessary and sufficient condition for the system of equations [Formula: see text] and [Formula: see text] to have positive integer solutions [Formula: see text] is obtained. By this result, we prove that if [Formula: see text] has a positive integer solution [Formula: see text] for [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, then [Formula: see text] and [Formula: see text], where [Formula: see text] is a positive integer, [Formula: see text] or [Formula: see text] and [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, [Formula: see text] is the integer part of [Formula: see text], except for [Formula: see text]


Author(s):  
Robin Wilson

‘More triangles and squares’ explores Diophantine equations, named after the mathematician Diophantus of Alexandria. These are equations requiring whole number solutions. Which numbers can be written as the sum of two perfect squares? Joseph-Louis Lagrange’s theorem guarantees that every number can be written as the sum of four squares, and Edward Waring correctly suggested that there are similar results for higher powers. In 1637, Fermat conjectured that no three positive integers, a, b, and c, can satisfy the equation an+bn=cn, if n is greater than 2. Known as ‘Fermat’s last theorem’, this conjecture was eventually proved by Andrew Wiles in 1995.


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


2016 ◽  
Vol 12 (1) ◽  
pp. 5825-5826
Author(s):  
JAMES E JOSEPH

In 1995, A, Wiles [2], [3], announced, using cyclic groups ( a subject area which was not available at the time of Fermat), a proof of Fermat's Last Theorem, which is stated as fol-lows: If is an odd prime and x; y; z; are relatively prime positive integers, then z 6= x + y: In this note, a new elegant proof of this result is presented. It is proved, using elementary algebra, that if is an odd prime and x; y; z; are positive integers satisfying z = x + y; then z; y; x; are each divisible by :


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


1989 ◽  
Vol 82 (8) ◽  
pp. 637-640
Author(s):  
Charles Vanden Eynden

Around 1637 the French jurist and amateur mathematician Pierre de Fermat wrote in the margin of his copy of Diophantus's Arithmetic that he had a “truly marvelous” proof that the equation xn + yn = zn has no solution in positive integers if n > 2. Unfortunately the margin was too narrow to contain it. In 1988 the world thought that the Japanese mathematician Yoichi Miyaoka, working at the Max Planck Institute in Bonn, West Germany, might have discovered a proof of this theorem. Such a proof would be of considerable interest because no evidence has been found that Fermat ever wrote one down, and no one has been able to find one in the 350 years since. In fact Miyaoka's announcement turned out to be premature, and a few weeks later articles reported holes in his argument that could not be repaired.


Sign in / Sign up

Export Citation Format

Share Document