beam propagation methods
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 1)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
B. Jaramillo Ávila ◽  
J. M. Torres ◽  
R. de J. León-Montiel ◽  
B. M. Rodríguez-Lara

Abstract We study propagation in a cyclic symmetric multicore fiber where the core radii randomly fluctuate along the propagation direction. We propose a hybrid analytic-numerical method to optimize the amplitude and frequency of the fluctuations that suppress power transfer between outer and inner cores. This framework allows us to analytically find noise amplitude parameters that optimally suppress crosstalk. Our predictions are confirmed by numerical experiments using finite difference beam propagation methods for realistic C-band fibers. The analytic part of our method is general, provides the optimum fluctuation amplitude independent of the array geometry, as long as normal modes can be calculated. It works for both correlated and uncorrelated fluctuations allowing its use for any given optical system described by coupled mode theory.


2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Jonathan Andreasen ◽  
Miroslav Kolesik

AbstractThis work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide modes. These simulations can be computationally expensive, however, so cost is reduced in the improved method by considering only the waveguide core. Fields in the cladding are then properly accounted for through a boundary condition suitable for the case of total internal reflection.


Sign in / Sign up

Export Citation Format

Share Document