allele difference
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

Author(s):  
A Baktash ◽  
J Corver ◽  
C Harmanus ◽  
W. K. Smits ◽  
W Fawley ◽  
...  

Clostridioides difficile is the most common cause of antibiotic-associated gastrointestinal infections. Capillary-electrophoresis (CE)-PCR ribotyping is currently the gold standard for C. difficile typing but lacks discriminatory power to study transmission and outbreaks in detail. New molecular methods have the capacity to differentiate better and provide standardized and interlaboratory exchangeable data. Using a well-characterized collection of diverse strains (N=630; 100 unique ribotypes (RTs)), we compared the discriminatory power of core genome multilocus sequence typing (cgMLST) (SeqSphere & EnteroBase), whole genome MLST (wgMLST) (EnteroBase) and single nucleotide polymorphism (SNP) analysis. A unique cgMLST profile (>6 allele differences) was observed in 82/100 RTs, indicating that cgMLST could distinguish most, but not all, RTs. Application of cgMLST in two outbreak settings with RT078 and RT181 (known with a low intra-RT allele difference) showed no distinction between outbreak- and non-outbreak strains, in contrast to wgMLST and SNP analysis. We conclude that cgMLST has the potential to be an alternative to CE-PCR ribotyping. The method is reproducible, easy to standardize and offers higher discrimination. However, adjusted cut-off thresholds and epidemiological data are necessary to recognize outbreaks of some specific RTs. We propose to use an allelic threshold 3 alleles to identify outbreaks.


2021 ◽  
Author(s):  
Amoe Baktash ◽  
Jeroen Corver ◽  
Celine Harmanus ◽  
Wiep Klaas Smits ◽  
Warren N. Fawley ◽  
...  

Clostridioides difficile is the most common cause of antibiotic-associated gastrointestinal infections. Capillary-electrophoresis (CE)-PCR ribotyping is currently the gold standard for C. difficile typing but lacks discriminatory power to study transmission and outbreaks in detail. New molecular methods have the capacity to differentiate better, but backward compatibility with CE-PCR ribotyping must be assessed. Using a well-characterized collection of diverse strains (N=630; 100 unique ribotypes [RTs]), we aimed to investigate PCR ribotyping prediction from core genome multilocus sequence typing (cgMLST). Additionally, we compared the discriminatory power of cgMLST (SeqSphere & EnteroBase) and whole genome MLST (wgMLST) (EnteroBase) with single nucleotide polymorphism (SNP) analysis). A unique cgMLST profile (>6 allele differences) was observed in 82/100 ribotypes, indicating sufficient backward compatibility. Intra-RT allele difference varied per ribotype and MLST clade. Application of cg/wgMLST and SNP analysis in two outbreak settings with ribotypes RT078 and RT181 (known with a low intra-ribotype allele difference) showed no distinction between outbreak- and non-outbreak strains, in contrast to wgMLST and SNP analysis. We conclude that cgMLST has the potential to be an alternative to CE-PCR ribotyping. The method is reproducible, easy to standardize and offers higher discrimination. However, in some ribotype complexes adjusted cut-off thresholds and epidemiological data are necessary to recognize outbreaks. We propose to decrease the current threshold of 6 to 3 alleles to better identify outbreaks.


2020 ◽  
Vol 16 (5) ◽  
pp. 626-634 ◽  
Author(s):  
Weiju Sun ◽  
Ying Han ◽  
Shuo Yang ◽  
He Zhuang ◽  
Jingwen Zhang ◽  
...  

Background: Observational studies support the inflammation hypothesis in coronary heart disease (CHD). As a pleiotropic proinflammatory cytokine, Interleukin-18 (IL-18), has also been found to be associated with the risk of CHD. However, to our knowledge, the method of Mendelian Randomization has not been used to explore the causal effect of IL-18 on CHD. Objective: To assess the causal effect of IL-18 on the risk of CHD. Methods and Results: Genetic variant instruments for IL-18 were obtained from information of the CHS and InCHIANTI cohort, and consisted of the per-allele difference in mean IL-18 for 16 independent variants that reached genome-wide significance. The per-allele difference in log-odds of CHD for each of these variants was estimated from CARDIoGRAMplusC4D, a two-stage meta -analysis. Two-sample Mendelian Randomization (MR) was then performed. Various MR analyses were used, including weighted inverse-variance, MR-Egger regression, robust regression, and penalized regression. The OR of elevated IL-18 associated with CHD was only 0.005 (95%CI -0.105~0.095; P-value=0.927). Similar results were obtained with the use of MR-Egger regression, suggesting that directional pleiotropy was unlikely biasing these results (intercept -0.050, P-value=0.220). Moreover, results from the robust regression and penalized regression analyses also revealed essentially similar findings. Conclusions: Our findings indicate that, by itself, IL-18 is unlikely to represent even a modest causal factor for CHD risk.


Sign in / Sign up

Export Citation Format

Share Document