higher chow groups
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 157 (10) ◽  
pp. 2089-2132
Author(s):  
Amalendu Krishna ◽  
Jinhyun Park

We show that the additive higher Chow groups of regular schemes over a field induce a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomorphic to the Zariski sheaf of big de Rham–Witt complexes. This provides an explicit cycle-theoretic description of the big de Rham–Witt sheaves. Several applications are derived.


2019 ◽  
Vol 28 (2) ◽  
pp. 339-390 ◽  
Author(s):  
Hiroyasu Miyazaki

2018 ◽  
Vol 236 ◽  
pp. 311-331
Author(s):  
TOMOHIDE TERASOMA

In this paper, we construct surfaces in $\mathbf{P}^{3}$ with large higher Chow groups defined over a Laurent power series field. Explicit elements in higher Chow group are constructed using configurations of lines contained in the surfaces. To prove the independentness, we compute the extension class in the Galois cohomologies by comparing them with the classical monodromies. It is reduced to the computation of linear algebra using monodromy weight spectral sequences.


2017 ◽  
Vol 18 (06) ◽  
pp. 1233-1293 ◽  
Author(s):  
Federico Binda ◽  
Shuji Saito

Let $\overline{X}$ be a separated scheme of finite type over a field $k$ and $D$ a non-reduced effective Cartier divisor on it. We attach to the pair $(\overline{X},D)$ a cycle complex with modulus, those homotopy groups – called higher Chow groups with modulus – generalize additive higher Chow groups of Bloch–Esnault, Rülling, Park and Krishna–Levine, and that sheafified on $\overline{X}_{\text{Zar}}$ gives a candidate definition for a relative motivic complex of the pair, that we compute in weight $1$ . When $\overline{X}$ is smooth over $k$ and $D$ is such that $D_{\text{red}}$ is a normal crossing divisor, we construct a fundamental class in the cohomology of relative differentials for a cycle satisfying the modulus condition, refining El Zein’s explicit construction of the fundamental class of a cycle. This is used to define a natural regulator map from the relative motivic complex of $(\overline{X},D)$ to the relative de Rham complex. When $\overline{X}$ is defined over $\mathbb{C}$ , the same method leads to the construction of a regulator map to a relative version of Deligne cohomology, generalizing Bloch’s regulator from higher Chow groups. Finally, when $\overline{X}$ is moreover connected and proper over $\mathbb{C}$ , we use relative Deligne cohomology to define relative intermediate Jacobians with modulus $J_{\overline{X}|D}^{r}$ of the pair $(\overline{X},D)$ . For $r=\dim \overline{X}$ , we show that $J_{\overline{X}|D}^{r}$ is the universal regular quotient of the Chow group of $0$ -cycles with modulus.


2013 ◽  
Vol 2015 (1) ◽  
pp. 1-54 ◽  
Author(s):  
Amalendu Krishna ◽  
Jinhyun Park

2013 ◽  
Vol 210 ◽  
pp. 29-58
Author(s):  
Takao Yamazaki

AbstractFor a smooth proper variety over ap-adic field, its Brauer group and abelian fundamental group are related to higher Chow groups by the Brauer–Manin pairing and class field theory. We generalize this relation to smooth (possibly nonproper) varieties, using motivic homology and a variant of Wiesend’s ideal class group. Several examples are discussed.


2013 ◽  
Vol 210 ◽  
pp. 29-58 ◽  
Author(s):  
Takao Yamazaki

AbstractFor a smooth proper variety over a p-adic field, its Brauer group and abelian fundamental group are related to higher Chow groups by the Brauer–Manin pairing and class field theory. We generalize this relation to smooth (possibly nonproper) varieties, using motivic homology and a variant of Wiesend’s ideal class group. Several examples are discussed.


Sign in / Sign up

Export Citation Format

Share Document