deligne cohomology
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2019 ◽  
Vol 21 (1) ◽  
pp. 129-159
Author(s):  
Daniel Grady ◽  
Hisham Sati
Keyword(s):  

2017 ◽  
Vol 53 (3) ◽  
pp. 445-466 ◽  
Author(s):  
Daniel Grady ◽  
Hisham Sati
Keyword(s):  

2017 ◽  
Vol 18 (06) ◽  
pp. 1233-1293 ◽  
Author(s):  
Federico Binda ◽  
Shuji Saito

Let $\overline{X}$ be a separated scheme of finite type over a field $k$ and $D$ a non-reduced effective Cartier divisor on it. We attach to the pair $(\overline{X},D)$ a cycle complex with modulus, those homotopy groups – called higher Chow groups with modulus – generalize additive higher Chow groups of Bloch–Esnault, Rülling, Park and Krishna–Levine, and that sheafified on $\overline{X}_{\text{Zar}}$ gives a candidate definition for a relative motivic complex of the pair, that we compute in weight $1$ . When $\overline{X}$ is smooth over $k$ and $D$ is such that $D_{\text{red}}$ is a normal crossing divisor, we construct a fundamental class in the cohomology of relative differentials for a cycle satisfying the modulus condition, refining El Zein’s explicit construction of the fundamental class of a cycle. This is used to define a natural regulator map from the relative motivic complex of $(\overline{X},D)$ to the relative de Rham complex. When $\overline{X}$ is defined over $\mathbb{C}$ , the same method leads to the construction of a regulator map to a relative version of Deligne cohomology, generalizing Bloch’s regulator from higher Chow groups. Finally, when $\overline{X}$ is moreover connected and proper over $\mathbb{C}$ , we use relative Deligne cohomology to define relative intermediate Jacobians with modulus $J_{\overline{X}|D}^{r}$ of the pair $(\overline{X},D)$ . For $r=\dim \overline{X}$ , we show that $J_{\overline{X}|D}^{r}$ is the universal regular quotient of the Chow group of $0$ -cycles with modulus.


Author(s):  
Jacob Murre

This chapter showcases five lectures on algebraic cycles and Chow groups. The first two lectures are over an arbitrary field, where they examine algebraic cycles, Chow groups, and equivalence relations. The second lecture also offers a short survey on the results for divisors. The next two lectures are over the complex numbers. The first of these features discussions on the cycle map, the intermediate Jacobian, Abel–Jacobi map, and the Deligne cohomology. The following lecture focuses on algebraic versus homological equivalence, as well as the Griffiths group. The final lecture, which returns to the arbitrary field, discusses the Albanese kernel and provides the results of Mumford, Bloch, and Bloch–Srinivas.


2017 ◽  
Vol 13 (09) ◽  
pp. 2471-2485 ◽  
Author(s):  
Danny Scarponi

In 2014, Kings and Rössler showed that the realization of the degree zero part of the abelian polylogarithm in analytic Deligne cohomology can be described in terms of a class of currents which was previously defined by Maillot and Rössler and strongly related to the Bismut–Köhler higher torsion form of the Poincaré bundle. In this paper we show that, if the base of the abelian scheme is proper, Kings and Rössler’s result can be refined to hold already in Deligne–Beilinson cohomology. More precisely, by means of Burgos’ theory of arithmetic Chow groups, we prove that the class of currents defined by Maillot and Rössler has a representative with logarithmic singularities at the boundary and therefore defines an element in Deligne–Beilinson cohomology. This element coincides with the realization of the degree zero part of the motivic polylogarithm on abelian schemes in Deligne–Beilinson cohomology.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Philippe Mathieu

We introduce Deligne cohomology that classifies U1 fibre bundles over 3 manifolds endowed with connections. We show how the structure of Deligne cohomology classes provides a way to perform exact (nonperturbative) computations in U1 Chern-Simons theory (BF theory, resp.) at the level of functional integrals. The partition functions (and observables) of these theories are strongly related to topological invariants well known to the mathematicians.


2012 ◽  
Vol 24 (03) ◽  
pp. 1250005 ◽  
Author(s):  
HISHAM SATI

We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinccase and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov–Lawson–Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.


Sign in / Sign up

Export Citation Format

Share Document