17o nmr spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Chia-Hsin Chen ◽  
Frederic Mentink-Vigier ◽  
Julien Trébosc ◽  
Ieva Goldberga ◽  
Philippe Gaveau ◽  
...  

2021 ◽  
Author(s):  
Chia-Hsin Chen ◽  
Frederic Mentink-Vigier ◽  
Julien Trébosc ◽  
Ieva Goldberga ◽  
Philippe Gaveau ◽  
...  

In recent years, there has been increasing interest in developing cost-efficient, fast, and user-friendly <sup>17</sup>O enrichment protocols to help understand the structure and reactivity of materials using <sup>17</sup>O NMR. Here, we show for the first time how ball milling (BM) can be used to selectively and efficiently enrich the surface of fumed silica, which is widely used at the industrial scale. Short milling times (up to 15 min) allowed modulation of the enrichment level (up to ca. 5%) without significantly changing the nature of the material. High-precision <sup>17</sup>O-compositions were measured at different milling times using LG-SIMS. High-resolution <sup>17</sup>O NMR analyses (including at 35.2 T) allowed clear identification of the signals from siloxane (Si-O-Si) and silanols (Si-OH), while DNP analyses, performed using direct <sup>17</sup>O polarization and indirect <sup>17</sup>O{<sup>1</sup>H} CP excitation, agreed with selective<sup> </sup>labeling of the surface. Information on the distribution of Si-OH environments at the surface was obtained from 2D <sup>1</sup>H-<sup>17</sup>O D-HMQC correlations. Finally, the surface-labeled silica was reacted with titania and using <sup>17</sup>O DNP, their common interface was probed and Si-O-Ti bonds identified.


2021 ◽  
Author(s):  
Chia-Hsin Chen ◽  
Frederic Mentink-Vigier ◽  
Julien Trébosc ◽  
Ieva Goldberga ◽  
Philippe Gaveau ◽  
...  

In recent years, there has been increasing interest in developing cost-efficient, fast, and user-friendly <sup>17</sup>O enrichment protocols to help understand the structure and reactivity of materials using <sup>17</sup>O NMR. Here, we show for the first time how ball milling (BM) can be used to selectively and efficiently enrich the surface of fumed silica, which is widely used at the industrial scale. Short milling times (up to 15 min) allowed modulation of the enrichment level (up to ca. 5%) without significantly changing the nature of the material. High-precision <sup>17</sup>O-compositions were measured at different milling times using LG-SIMS. High-resolution <sup>17</sup>O NMR analyses (including at 35.2 T) allowed clear identification of the signals from siloxane (Si-O-Si) and silanols (Si-OH), while DNP analyses, performed using direct <sup>17</sup>O polarization and indirect <sup>17</sup>O{<sup>1</sup>H} CP excitation, agreed with selective<sup> </sup>labeling of the surface. Information on the distribution of Si-OH environments at the surface was obtained from 2D <sup>1</sup>H-<sup>17</sup>O D-HMQC correlations. Finally, the surface-labeled silica was reacted with titania and using <sup>17</sup>O DNP, their common interface was probed and Si-O-Ti bonds identified.


2021 ◽  
Vol 12 (14) ◽  
pp. 5016-5036
Author(s):  
Sharon E. Ashbrook ◽  
Zachary H. Davis ◽  
Russell E. Morris ◽  
Cameron M. Rice

Cost-effective and atom-efficient isotopic enrichment enables 17O NMR spectroscopy of microporous materials to be used to probe local structure and disorder and to explore chemical reactivity.


Sign in / Sign up

Export Citation Format

Share Document