membership information
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 44)

H-INDEX

7
(FIVE YEARS 2)

BMC Genomics ◽  
2021 ◽  
Vol 22 (S4) ◽  
Author(s):  
Imam Cartealy ◽  
Li Liao

Abstract Background Inference of protein’s membership in metabolic pathways has become an important task in functional annotation of protein. The membership information can provide valuable context to the basic functional annotation and also aid reconstruction of incomplete pathways. Previous works have shown success of inference by using various similarity measures of gene ontology. Results In this work, we set out to explore integrating ontology and sequential information to further improve the accuracy. Specifically, we developed a neural network model with an architecture tailored to facilitate the integration of features from different sources. Furthermore, we built models that are able to perform predictions from pathway-centric or protein-centric perspectives. We tested the classifiers using 5-fold cross validation for all metabolic pathways reported in KEGG database. Conclusions The testing results demonstrate that by integrating ontology and sequential information with a tailored architecture our deep neural network method outperforms the existing methods significantly in the pathway-centric mode, and in the protein-centric mode, our method either outperforms or performs comparably with a suite of existing GO term based semantic similarity methods.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 696
Author(s):  
Haipeng Chen ◽  
Zeyu Xie ◽  
Yongping Huang ◽  
Di Gai

The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy.


Sign in / Sign up

Export Citation Format

Share Document