power invariant
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Raquel Fernandez-Peralta ◽  
Sebastia Massanet ◽  
Arnau Mir
Keyword(s):  

Author(s):  
Rawid Banchuin ◽  
Roungsan Chaisrichaoren

An extensive s-domain tensor algebraic model of the transformer has been proposed. Unlike the traditional matrix-vector approach which relies on the conventional linear algebra, this model which in turn assumes the multilinear algebra that is of higher dimension thus more generic, is applicable to those recently often cited transformers which often employ the unconventional characteristics i.e. frequency variant parameters, time variant parameters and fractional impedance. The examples of such transformers are the on-chip monolithic transformer, the dynamic transformers and the fractional mutual inductance etc. The imperfect coupling has been considered and multiple winding transformer has also been assumed. The applications of the proposed model to the chosen recent transformers with those unconventional characteristics have been presented. The effects of failure of Kron’s postulate on power invariant and validity of duality invariant which are worthy of mentioned issues, have also been discussed. The proposed extensive model is more inclusive and up to date than the matrix-vector based model and those foregoing tensor algebraic models albeit it is more complicated.


2018 ◽  
Vol 4 (1) ◽  
pp. 1-9
Author(s):  
Guadalupe G González ◽  
Mehrdad Ehsani

2009 ◽  
Vol 24 (40) ◽  
pp. 3275-3282 ◽  
Author(s):  
LIJING SHAO ◽  
BO-QIANG MA

A phenomenological law, called Benford's law, states that the occurrence of the first digit, i.e. 1, 2,…, 9, of numbers from many real world sources is not uniformly distributed, but instead favors smaller ones according to a logarithmic distribution. We investigate, for the first time, the first digit distribution of the full widths of mesons and baryons in the well-defined science domain of particle physics systematically, and find that they agree excellently with the Benford distribution. We also discuss several general properties of Benford's law, i.e. the law is scale-invariant, base-invariant and power-invariant. This means that the lifetimes of hadrons also follow Benford's law.


Sign in / Sign up

Export Citation Format

Share Document