drive reporter gene expression
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2018 ◽  
Author(s):  
Timothy B. Sackton ◽  
Phil Grayson ◽  
Alison Cloutier ◽  
Zhirui Hu ◽  
Jun S. Liu ◽  
...  

The relative roles of regulatory and protein evolution in the origin and loss of convergent phenotypic traits is a core question in evolutionary biology. Here we combine phylogenomic, epigenomic and developmental data to show that convergent evolution of regulatory regions, but not protein-coding genes, is associated with flightlessness in palaeognathous birds, a classic example of a convergent phenotype. Eleven new genomes, including a draft genome from an extinct moa, resolve palaeognath phylogeny and show that the incidence of independent, convergent accelerations among 284,000 conserved non-exonic elements is significantly more frequent in ratites than other bird lineages. Ratite-specific acceleration of conserved regions and measures of open chromatin across eight tissues in the developing chick identify candidate regulatory regions that may have modified or lost function in ratites. Enhancer activity assays conducted in the early developing chicken forelimb confirm that volant versions of a conserved element in the first intron of the TEAD1 gene display conserved enhancer activity, whereas an accelerated flightless version fails to drive reporter gene expression. Our results show that convergent molecular changes associated with loss of flight are largely regulatory in nature.


2016 ◽  
Vol 113 (27) ◽  
pp. 7563-7568 ◽  
Author(s):  
Joshua W. Vincentz ◽  
Jose J. Casasnovas ◽  
Ralston M. Barnes ◽  
Jianwen Que ◽  
David E. Clouthier ◽  
...  

Cranial neural crest cells (crNCCs) migrate from the neural tube to the pharyngeal arches (PAs) of the developing embryo and, subsequently, differentiate into bone and connective tissue to form the mandible. Within the PAs, crNCCs respond to local signaling cues to partition into the proximo-distally oriented subdomains that convey positional information to these developing tissues. Here, we show that the distal-most of these subdomains, the distal cap, is marked by expression of the transcription factor Hand1 (H1) and gives rise to the ectomesenchymal derivatives of the lower incisors. We uncover a H1 enhancer sufficient to drive reporter gene expression within the crNCCs of the distal cap. We show that bone morphogenic protein (BMP) signaling and the transcription factor HAND2 (H2) synergistically regulate H1 distal cap expression. Furthermore, the homeodomain proteins distal-less homeobox 5 (DLX5) and DLX6 reciprocally inhibit BMP/H2-mediated H1 enhancer regulation. These findings provide insights into how multiple signaling pathways direct transcriptional outcomes that pattern the developing jaw.


2015 ◽  
Vol 112 (15) ◽  
pp. E1861-E1870 ◽  
Author(s):  
Sofia Nasif ◽  
Flavio S. J. de Souza ◽  
Laura E. González ◽  
Miho Yamashita ◽  
Daniela P. Orquera ◽  
...  

Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.


1997 ◽  
Vol 9 (12) ◽  
pp. 2119-2134 ◽  
Author(s):  
N Barthels ◽  
F M van der Lee ◽  
J Klap ◽  
O J Goddijn ◽  
M Karimi ◽  
...  

1997 ◽  
Vol 9 (12) ◽  
pp. 2119 ◽  
Author(s):  
Nathalie Barthels ◽  
Frederique M. van der Lee ◽  
Joke Klap ◽  
Oscar J. M. Goddijn ◽  
Mansour Karimi ◽  
...  

1997 ◽  
Vol 17 (2) ◽  
pp. 656-666 ◽  
Author(s):  
F Spitz ◽  
M Salminen ◽  
J Demignon ◽  
A Kahn ◽  
D Daegelen ◽  
...  

The human aldolase A pM promoter is active in fast-twitch muscles. To understand the role of the different transcription factors which bind to this promoter and determine which ones are responsible for its restricted pattern of expression, we analyzed several transgenic lines harboring different combinations of pM regulatory elements. We show that muscle-specific expression can be achieved without any binding sites for the myogenic factors MyoD and MEF2 and that a 64-bp fragment comprising a MEF3 motif and an NFI binding site is sufficient to drive reporter gene expression in some but, interestingly, not all fast-twitch muscles. A result related to this pattern of expression is that some isoforms of NFI proteins accumulate differentially in fast- and slow-twitch muscles and in distinct fast-twitch muscles. We propose that these isoforms of NFI proteins might provide a molecular basis for skeletal muscle diversity.


Sign in / Sign up

Export Citation Format

Share Document