food intake
Recently Published Documents


TOTAL DOCUMENTS

13948
(FIVE YEARS 2306)

H-INDEX

186
(FIVE YEARS 15)

2023 ◽  
Vol 76 (07) ◽  
pp. 6374-2023 ◽  
Author(s):  
ALEKSANDRA GÓRSKA ◽  
MARCIN B. ARCISZEWSKI

Recently, interest in glucagon-like peptide-1 (GLP-1) and other peptides derived from preproglucagon has increased significantly. GLP-1 is a 30-amino acid peptide hormone produced in L-type enteroendocrine cells as a response to food intake. GLP-1 is rapidly metabolized and inactivated by the dipeptidyl peptidase IV enzyme before the hormone leaves the intestine, which increases the likelihood that GLP-1 action is transmitted through sensory neurons in the intestine and liver through the GLP-1 receptor. The main actions of GLP-1 are to stimulate insulin secretion (i.e. act as incretin hormone) and inhibit glucagon secretion, thus contributing to the reduction of postprandial glucose spikes. GLP-1 also inhibits motility and gastrointestinal secretion, and therefore acts as part of the „small bowel brake” mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these effects, GLP-1 or GLP-1 receptor agonists are now increasingly used to treat type 2 diabetes. Reduced GLP-1 secretion may contribute to the development of obesity, and excessive secretion may be responsible for postprandial reactive hypoglycemia. The use of GLP-1 agonists opens up new possibilities for the treatment of type 2 diabetes and other metabolic diseases. In the last two decades, many interesting studies covering both the physiological and pathophysiological role of GLP-1 have been published, and our understanding of GLP-1 has broadened significantly. In this review article, we have tried to describe our current understanding of how GLP-1 works as both a peripheral hormone and as a central neurotransmitter in health and disease. We focused on its biological effects on the body and the potential clinical application in relation to current research.


2022 ◽  
Vol 23 (2) ◽  
pp. 960
Author(s):  
Jean-Denis Troadec ◽  
Stéphanie Gaigé ◽  
Manon Barbot ◽  
Bruno Lebrun ◽  
Rym Barbouche ◽  
...  

The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Jyoti Sihag ◽  
Vincenzo Di Marzo

AbstractThe discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Ewelina Wardzinski ◽  
Kamila Jauch-Chara ◽  
Sarah Haars ◽  
Uwe Melchert ◽  
Harald Scholand-Engler ◽  
...  

Obesity and mobile phone usage have simultaneously spread worldwide. Radio frequency-modulated electromagnetic fields (RF-EMFs) emitted by mobile phones are largely absorbed by the head of the user, influence cerebral glucose metabolism, and modulate neuronal excitability. Body weight adjustment, in turn, is one of the main brain functions as food intake behavior and appetite perception underlie hypothalamic regulation. Against this background, we questioned if mobile phone radiation and food intake may be related. In a single-blind, sham-controlled, randomized crossover comparison, 15 normal-weight young men (23.47 ± 0.68 years) were exposed to 25 min of RF-EMFs emitted by two different mobile phone types vs. sham radiation under fasting conditions. Spontaneous food intake was assessed by an ad libitum standard buffet test and cerebral energy homeostasis was monitored by 31phosphorus-magnetic resonance spectroscopy measurements. Exposure to both mobile phones strikingly increased overall caloric intake by 22–27% compared with the sham condition. Differential analyses of macronutrient ingestion revealed that higher calorie consumption was mainly due to enhanced carbohydrate intake. Measurements of the cerebral energy content, i.e., adenosine triphosphate and phosphocreatine ratios to inorganic phosphate, displayed an increase upon mobile phone radiation. Our results identify RF-EMFs as a potential contributing factor to overeating, which underlies the obesity epidemic. Beyond that, the observed RF-EMFs-induced alterations of the brain energy homeostasis may put our data into a broader context because a balanced brain energy homeostasis is of fundamental importance for all brain functions. Potential disturbances by electromagnetic fields may therefore exert some generalized neurobiological effects, which are not yet foreseeable.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Samantha M. Solon-Biet ◽  
Lucy Griffiths ◽  
Sophie Fosh ◽  
David G. Le Couteur ◽  
Stephen J. Simpson ◽  
...  

Abstract Background The role of dietary branched chain amino acids (BCAAs) and their effect on metabolic health is complex. How dietary BCAA levels and their interaction with background nutrition affect health is unclear. Here, we used meta-analysis and meta-regression, together with the nutritional modelling, to analyse the results of rodent studies that increased the level of dietary BCAAs and measured circulating levels, outcomes related to metabolic health, body mass and food intake. Results Across all studies, increasing dietary BCAAs resulted in increased levels of circulating BCAAs. These effects, however, were heavily moderated by background dietary levels whereby on high BCAA diets, further increases were not reflected in the blood. Impaired glucose tolerance was associated with elevated dietary BCAAs, with the greatest effect occurring with a simultaneous increase in total protein intake. Effects of dietary BCAAs on plasma glucose, insulin, or HOMA emerged only when dietary macronutrient background was considered. We found that elevated dietary BCAAs increases % body fat, with largest increases in adiposity occurring when BCAAs are increased on a high protein, low carbohydrate dietary background. Finally, we found that increased dietary BCAAs were associated with increased food intake when the background diet was low in BCAAs. Conclusion Our data highlights the interaction between BCAAs and background nutrition. We show that the effects of BCAAs on metabolic health cannot be studied in isolation but must be considered as part of complex mixture of dietary components.


2022 ◽  
Vol 23 (2) ◽  
pp. 917
Author(s):  
Mónika Gönczi ◽  
Andrea Csemer ◽  
László Szabó ◽  
Mónika Sztretye ◽  
János Fodor ◽  
...  

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


2022 ◽  
Author(s):  
Madhubrota Chatterjee

As nutrition is very critical and its access helps in the improvement of health and creates overall development, it is very vital for the children at their initial stages. In these period of rapid growth, India is still witnessing a huge discrimination regarding the children's solid food intake.<div>This paper seeks to find out the extent of these supplemental food inequality among children aged 6 to 59 months of age using the National Family Health Survey, round 4 data.</div><div>The results are very much evident to show the inequality among female children, along with discontinued breastfeeding. </div>


2022 ◽  
Author(s):  
Madhubrota Chatterjee

As nutrition is very critical and its access helps in the improvement of health and creates overall development, it is very vital for the children at their initial stages. In these period of rapid growth, India is still witnessing a huge discrimination regarding the children's solid food intake.<div>This paper seeks to find out the extent of these supplemental food inequality among children aged 6 to 59 months of age using the National Family Health Survey, round 4 data.</div><div>The results are very much evident to show the inequality among female children, along with discontinued breastfeeding. </div>


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kaylen J. Pfisterer ◽  
Robert Amelard ◽  
Audrey G. Chung ◽  
Braeden Syrnyk ◽  
Alexander MacLean ◽  
...  

AbstractMalnutrition is a multidomain problem affecting 54% of older adults in long-term care (LTC). Monitoring nutritional intake in LTC is laborious and subjective, limiting clinical inference capabilities. Recent advances in automatic image-based food estimation have not yet been evaluated in LTC settings. Here, we describe a fully automatic imaging system for quantifying food intake. We propose a novel deep convolutional encoder-decoder food network with depth-refinement (EDFN-D) using an RGB-D camera for quantifying a plate’s remaining food volume relative to reference portions in whole and modified texture foods. We trained and validated the network on the pre-labelled UNIMIB2016 food dataset and tested on our two novel LTC-inspired plate datasets (689 plate images, 36 unique foods). EDFN-D performed comparably to depth-refined graph cut on IOU (0.879 vs. 0.887), with intake errors well below typical 50% (mean percent intake error: $$-4.2$$ - 4.2 %). We identify how standard segmentation metrics are insufficient due to visual-volume discordance, and include volume disparity analysis to facilitate system trust. This system provides improved transparency, approximates human assessors with enhanced objectivity, accuracy, and precision while avoiding hefty semi-automatic method time requirements. This may help address short-comings currently limiting utility of automated early malnutrition detection in resource-constrained LTC and hospital settings.


Author(s):  
Jeff Hollis ◽  
Scott Mann ◽  
Ashlie Watters ◽  
Judy Oakes ◽  
Philip S. Mehler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document