local signaling
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 3)

mBio ◽  
2021 ◽  
Author(s):  
Eike H. Junkermeier ◽  
Regine Hengge

Key findings in model organisms led to the concept of “local” signaling, challenging the dogma of a gradually increasing global intracellular c-di-GMP concentration driving the motile-sessile transition in bacteria. In our current model, bacteria dynamically combine both global and local signaling modes, in which specific DGCs and/or PDEs team up with effector/target systems in multiprotein complexes.


Author(s):  
Marius Schwabenland ◽  
Wolfgang Brück ◽  
Josef Priller ◽  
Christine Stadelmann ◽  
Hans Lassmann ◽  
...  

AbstractAs extremely sensitive immune cells, microglia act as versatile watchdogs of the central nervous system (CNS) that tightly control tissue homeostasis. Therefore, microglial activation is an early and easily detectable hallmark of virtually all neuropsychiatric, neuro-oncological, neurodevelopmental, neurodegenerative and neuroinflammatory diseases. The recent introduction of novel high-throughput technologies and several single-cell methodologies as well as advances in epigenetic analyses helped to identify new microglia expression profiles, enhancer-landscapes and local signaling cues that defined diverse previously unappreciated microglia states in the healthy and diseased CNS. Here, we give an overview on the recent developments in the field of microglia biology and provide a practical guide to analyze disease-associated microglia phenotypes in both the murine and human CNS, on several morphological and molecular levels. Finally, technical limitations, potential pitfalls and data misinterpretations are discussed as well.


2021 ◽  
Author(s):  
Andrew A Bridges ◽  
Joseph A Prentice ◽  
Chenyi Fei ◽  
Ned S Wingreen ◽  
Bonnie L Bassler

Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second-messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae. Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which in turn, drives alterations specifically to biofilm gene expression. A longstanding question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V. cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input-output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009709
Author(s):  
Aditya Kanwal ◽  
Pranav Vijay Joshi ◽  
Sudip Mandal ◽  
Lolitika Mandal

Drosophila larval hematopoiesis occurs in a specialized multi-lobed organ called the lymph gland. Extensive characterization of the organ has provided mechanistic insights into events related to developmental hematopoiesis. Spanning from the thoracic to the abdominal segment of the larvae, this organ comprises a pair of primary, secondary, and tertiary lobes. Much of our understanding arises from the studies on the primary lobe, while the secondary and tertiary lobes have remained mostly unexplored. Previous studies have inferred that these lobes are composed of progenitors that differentiate during pupation; however, the mechanistic basis of this extended progenitor state remains unclear. This study shows that posterior lobe progenitors are maintained by a local signaling center defined by Ubx and Collier in the tertiary lobe. This Ubx zone in the tertiary lobe shares several markers with the niche of the primary lobe. Ubx domain regulates the homeostasis of the posterior lobe progenitors in normal development and an immune-challenged scenario. Our study establishes the lymph gland as a model to tease out how the progenitors interface with the dual niches within an organ during development and disorders.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tiago Ramalho ◽  
Stephan Kremser ◽  
Hao Wu ◽  
Ulrich Gerland

AbstractComplex systems, ranging from developing embryos to systems of locally communicating agents, display an apparent capability of “programmable” pattern formation: They reproducibly form target patterns, but those targets can be readily changed. A distinguishing feature of such systems is that their subunits are capable of information processing. Here, we explore schemes for programmable pattern formation within a theoretical framework, in which subunits process local signals to update their discrete state following logical rules. We study systems with different update rules, topologies, and control schemes, assessing their capability of programmable pattern formation and their susceptibility to errors. Only a fraction permits local organizers to dictate any target pattern, by transcribing temporal patterns into spatial patterns, reminiscent of the principle underlying vertebrate somitogenesis. An alternative scheme employing variable rules cannot reach all patterns but is insensitive to the timing of organizer inputs. Our results establish a basis for designing synthetic systems and models of programmable pattern formation closer to real systems.


Author(s):  
Alexandria N. Hughes

Building a functional nervous system requires the coordinated actions of many glial cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate neuronal axons to increase conduction velocity and provide trophic support. Myelination can be modified by local signaling at the axon-myelin interface, potentially adapting sheaths to support the metabolic needs and physiology of individual neurons. However, neurons and oligodendrocytes are not wholly responsible for crafting the myelination patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes, modify myelination. In this review, I cover the contributions of non-neuronal, non-oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I address ways that these cell types interact with the oligodendrocyte lineage throughout development to modify myelination. Additionally, I discuss mechanisms by which these cells may indirectly tune myelination by regulating neuronal activity. Understanding how glial-glial interactions regulate myelination is essential for understanding how the brain functions as a whole and for developing strategies to repair myelin in disease.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Diego Crespo ◽  
Luiz H. C. Assis ◽  
Yu Ting Zhang ◽  
Diego Safian ◽  
Tomasz Furmanek ◽  
...  

AbstractPituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.


2020 ◽  
Author(s):  
Diego Crespo ◽  
Luiz Assis ◽  
Yu Ting Zhang ◽  
Diego Safian ◽  
Tomasz Furmanek ◽  
...  

Abstract Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.


2020 ◽  
Vol 33 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Emiko Yoro ◽  
Takuya Suzaki ◽  
Masayoshi Kawaguchi

Legumes survive in nitrogen-limited soil by forming a symbiosis with rhizobial bacteria. During root nodule symbiosis, legumes strictly control the development of their symbiotic organs, the nodules, in a process known as autoregulation of nodulation (AON). The study of hypernodulation mutants has elucidated the molecular basis of AON. Some hypernodulation mutants show an increase in rhizobial infection in addition to developmental alteration. However, the relationship between the AON and the regulation of rhizobial infection has not been clarified. We previously isolated daphne, a nodule inception (nin) allelic mutant, in Lotus japonicus. This mutant displayed dramatically increased rhizobial infection, suggesting the existence of NIN-mediated negative regulation of rhizobial infection. Here, we investigated whether the previously isolated components of AON, especially CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and their putative receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1), were able to suppress increased infection in the daphne mutant. The constitutive expression of LjCLE-RS1/2 strongly reduced the infection in the daphne mutant in a HAR1-dependent manner. Moreover, reciprocal grafting analysis showed that strong reduction of infection in daphne rootstock constitutively expressing LjCLE-RS1 was canceled by a scion of the har1 or klavier mutant, the genes responsible for encoding putative LjCLE-RS1 receptors. These data indicate that rhizobial infection is also systemically regulated by CLE-HAR1 signaling, a component of AON. In addition, the constitutive expression of NIN in daphne har1 double-mutant roots only partially reduced the rhizobial infection. Our findings indicate that the previously identified NIN-mediated negative regulation of infection involves unknown local signaling, as well as CLE-HAR1 long-distance signaling.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Andres-Alonso ◽  
Mohamed Raafet Ammar ◽  
Ioana Butnaru ◽  
Guilherme M. Gomes ◽  
Gustavo Acuña Sanhueza ◽  
...  

AbstractAmphisomes are organelles of the autophagy pathway that result from the fusion of autophagosomes with late endosomes. While biogenesis of autophagosomes and late endosomes occurs continuously at axon terminals, non-degradative roles of autophagy at boutons are barely described. Here, we show that in neurons BDNF/TrkB traffick in amphisomes that signal locally at presynaptic boutons during retrograde transport to the soma. This is orchestrated by the Rap GTPase-activating (RapGAP) protein SIPA1L2, which connects TrkB amphisomes to a dynein motor. The autophagosomal protein LC3 regulates RapGAP activity of SIPA1L2 and controls retrograde trafficking and local signaling of TrkB. Following induction of presynaptic plasticity, amphisomes dissociate from dynein at boutons enabling local signaling and promoting transmitter release. Accordingly, sipa1l2 knockout mice show impaired BDNF-dependent presynaptic plasticity. Taken together, the data suggest that in hippocampal neurons, TrkB-signaling endosomes are in fact amphisomes that during retrograde transport have local signaling capacity in the context of presynaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document