scholarly journals Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood

2015 ◽  
Vol 112 (15) ◽  
pp. E1861-E1870 ◽  
Author(s):  
Sofia Nasif ◽  
Flavio S. J. de Souza ◽  
Laura E. González ◽  
Miho Yamashita ◽  
Daniela P. Orquera ◽  
...  

Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


Rangifer ◽  
1998 ◽  
Vol 18 (1) ◽  
pp. 35
Author(s):  
R. Moen ◽  
M. A. Olsen ◽  
Ø. E. Haga ◽  
W. Sørmo ◽  
T. H. Aagnes Utsi ◽  
...  

Leafy timothy (Phleum pratense) silage (S), silage mixed with molasses (SM) and hay (H) were fed to nine male reindeer (Rangifer tarandus tarandus) calves in winter to investigate rumen function and digestion. Three calves were given S with 18.5% dry matter (DM), three were given SM (21.9% DM) and three were given H (85.0% DM). The content of water soluble carbohydrates (in % of DM) was 8.2% in S, 16.0% in SM and 8.5% in H. Median (range) daily DM food intake per kg BM was 12.9 (9-2-14.4) g in calves fed S, 19.0 (19-0-21.9) g in calves fed SM and 21.0 (19.2¬21.1) g in calves fed H. In vivo digestion of S and SM DM ranged from 78.5-83.1% compared to only 69-9-72.9% in calves fed H. In vitro DM digestion (IVDMD) of cellulose (median) incubated for 48 hours in rumen fluid was, however, significantly (F = 0.05) lower in calves fed S (24.4%) compared to calves fed SM (42.2%). Median IVDMD of cellulose (48 hours) in calves fed H was 36.4%. Total concentration of VFA (range) in the rumen fluid from reindeer fed H (99.7-113.6 mM) and was significantly (P<0.05) higher compared to animals fed S (57.7-85.9 mM) or SM (51.4-72.0 mM). Likewise, the pH of the rumen fluid (range) was significantly (P<0.05) lower in reindeer fed H (6.40-6.78) compared to animals fed S (6.97-7.30) or SM (6.79-7.27). Based on this study it is concluded that leafy timothy preserved as hay seems to be more suitable as emergency feed compared to silage. Supplementation of molasses to silage seems to stimulate food intake and ruminal cellulose digestion in reindeer. The lower intake of S compared to SM or H by reindeer may be explained by ruminal energy deficiency.


2013 ◽  
Vol 451 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Jackwee Lim ◽  
Sheng Yao ◽  
Martin Graf ◽  
Christoph Winkler ◽  
Daiwen Yang

Midkine is a heparin-binding di-domain growth factor, implicated in many biological processes as diverse as angiogenesis, neurogenesis and tumorigenesis. Elevated midkine levels reflect poor prognosis for many carcinomas, yet the molecular and cellular mechanisms orchestrating its activity remain unclear. At the present time, the individual structures of isolated half domains of human midkine are known and its functionally active C-terminal half domain remains a popular therapeutic target. In the present study, we determined the structure of full-length zebrafish midkine and show that it interacts with fondaparinux (a synthetic highly sulfated pentasaccharide) and natural heparin through a previously uncharacterized, but highly conserved, hinge region. Mutating six consecutive residues in the conserved hinge to glycine strongly abates heparin binding and midkine embryogenic activity. In contrast with previous in vitro studies, we found that the isolated C-terminal half domain is not active in vivo in embryos. Instead, we have demonstrated that the N-terminal half domain is needed to enhance heparin binding and mediate midkine embryogenic activity surprisingly in both heparin-dependent and -independent manners. Our findings provide new insights into the structural features of full-length midkine relevant for embryogenesis, and unravel additional therapeutic routes targeting the N-terminal half domain and conserved hinge.


2007 ◽  
Vol 292 (1) ◽  
pp. R637-R643 ◽  
Author(s):  
Willis K. Samson ◽  
Meghan M. White ◽  
Christopher Price ◽  
Alastair V. Ferguson

Derived from the same prohormone, obestatin has been reported to exert effects on food intake that oppose those of ghrelin. The obestatin receptor GPR39 is present in brain and pituitary gland. Since the gene encoding those two peptides is expressed also in those tissues, we examined further the possible actions of obestatin in vivo and in vitro. Intracerebroventricular administration of obestatin inhibited water drinking in ad libitum-fed and -watered rats, and in food-and water-deprived animals. The effects on water drinking preceded and were more pronounced than any effect on food intake, and did not appear to be the result of altered locomotor/behavioral activity. In addition, obestatin inhibited ANG II-induced water drinking in animals provided free access to water and food. Current-clamp recordings from cultured, subfornical organ neurons revealed significant effects of the peptide on membrane potential, suggesting this as a potential site of action. In pituitary cell cultures, log molar concentrations of obestatin ranging from 1.0 pM to 100 nM failed to alter basal growth hormone (GH) secretion. In addition, 100 nM obestatin failed to interfere with the stimulation of GH secretion by GH-releasing hormone or ghrelin and did not alter the inhibition by somatostatin in vitro. We conclude that obestatin does not act in pituitary gland to regulate GH secretion but may act in brain to alter thirst mechanisms. Importantly, in rats the effects of obestatin on food intake may be secondary to an action of the peptide to inhibit water drinking.


Virus Genes ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Aixu Sun ◽  
G. Devi-Rao ◽  
M. Rice ◽  
L. Gary ◽  
D. Bloom ◽  
...  

2000 ◽  
Vol 279 (1) ◽  
pp. E116-E123 ◽  
Author(s):  
S. Dridi ◽  
N. Raver ◽  
E. E. Gussakovsky ◽  
M. Derouet ◽  
M. Picard ◽  
...  

The chicken leptin sequence, in contrast to mammalian leptins, contains an unpaired Cys at position 3 of the original cDNA ( AF012727 ). The presence of an extra Cys may confer a different structure and affect the leptin's biological activity. To address this, we studied the effects of wild-type and mutated (C4S) chicken leptins in vitro and in vivo and compared them with mammalian leptin prepared from ovine leptin cDNA. The prokaryotic expression vector pMON, encoding full-size A(−1) chicken leptin ( AF012727 ), was mutated using a mutagenesis kit, yielding the C4S analog. Escherichia coli cells transformed with this vector overexpressed large amounts of chicken leptin C4S upon induction with nalidixic acid. The expressed protein, found in the inclusion bodies, was refolded and purified to homogeneity on a Q-Sepharose column, yielding three electrophoretically pure fractions, eluted from the column by 100, 125, and 150 mM NaCl, respectively. All three fractions showed a single band of the expected molecular mass (16 kDa) and were composed of >95% monomeric protein. Proper refolding was evidenced by comparing the circular dichroism spectrum of the analog with spectra of nonmutated chicken and ovine leptins. The biological activity of the C4S analog was evidenced by its ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin receptor construct similar to its nonmutated counterpart, indicating that Cys4 plays no role in leptin activity. The in vitro activity of both wild-type and mutated chicken leptins was ∼10-fold lower than that of ovine leptin. After intravenous or intraperitoneal injections, C4S analog and the nonmutated chicken and ovine leptins all lowered the food intake of starved 9-day-old broiler or 5-wk-old layer male chickens by 11–34%. Monitoring food behavior revealed that the attenuated food intake resulted not from a decreased number of approaches to the feeders but from a decrease in the average time spent eating during each approach.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1648-1653 ◽  
Author(s):  
Philippe Zizzari ◽  
Romaine Longchamps ◽  
Jacques Epelbaum ◽  
Marie Thérèse Bluet-Pajot

Administration of ghrelin, an endogenous ligand for the GH secretagogue receptor 1a (GHSR 1a), induces potent stimulating effects on GH secretion and food intake. However, more than 7 yr after its discovery, the role of endogenous ghrelin remains elusive. Recently, a second peptide, obestatin, also generated from proteolytic cleavage of preproghrelin has been identified. This peptide inhibits food intake and gastrointestinal motility but does not modify in vitro GH release from pituitary cells. In this study, we have reinvestigated obestatin functions by measuring plasma ghrelin and obestatin levels in a period of spontaneous feeding in ad libitum-fed and 24-h fasted mice. Whereas fasting resulted in elevated ghrelin levels, obestatin levels were significantly reduced. Exogenous obestatin per se did not modify food intake in fasted and fed mice. However, it inhibited ghrelin orexigenic effect that were evident in fed mice only. The effects of obestatin on GH secretion were monitored in superfused pituitary explants and in freely moving rats. Obestatin was only effective in vivo to inhibit ghrelin stimulation of GH levels. Finally, the relationship between octanoylated ghrelin, obestatin, and GH secretions was evaluated by iterative blood sampling every 20 min during 6 h in freely moving adult male rats. The half-life of exogenous obestatin (10 μg iv) in plasma was about 22 min. Plasma obestatin levels exhibited an ultradian pulsatility with a frequency slightly lower than octanoylated ghrelin and GH. Ghrelin and obestatin levels were not strictly correlated. In conclusion, these results show that obestatin, like ghrelin, is secreted in a pulsatile manner and that in some conditions; obestatin can modulate exogenous ghrelin action. It remains to be determined whether obestatin modulates endogenous ghrelin actions.


2008 ◽  
Vol 190 (13) ◽  
pp. 4416-4426 ◽  
Author(s):  
Penelope I. Higgs ◽  
Sakthimala Jagadeesan ◽  
Petra Mann ◽  
David R. Zusman

ABSTRACT Myxococcus xanthus undergoes a complex starvation-induced developmental program that results in cells forming multicellular fruiting bodies by aggregating into mounds and then differentiating into spores. This developmental program requires at least 72 h and is mediated by a temporal cascade of gene regulators in response to intra- and extracellular signals. espA mutants, encoding an orphan hybrid histidine kinase, alter the timing of this developmental program, greatly accelerating developmental progression. Here, we characterized EspA and demonstrated that it autophosphorylates in vitro on the conserved histidine residue and then transfers the phosphoryl group to the conserved aspartate residue in the associated receiver domain. The conserved histidine and aspartate residues were both required for EspA function in vivo. Analysis of developmental gene expression and protein accumulation in espA mutants indicated that the expression of the A-signal-dependent spi gene was not affected but that the MrpC transcriptional regulator accumulated earlier, resulting in earlier expression of its target, the FruA transcriptional regulator. Early expression of FruA correlated with acceleration of both the aggregation and sporulation branches of the developmental program, as monitored by early methylation of the FrzCD chemosensory receptor and early expression of the sporulation-specific dev and Mxan_3227 (Ω7536) genes. These results show that EspA plays a key role in the timing of expression of genes necessary for progression of cells through the developmental program.


2013 ◽  
Vol 289 (3) ◽  
pp. 1457-1466 ◽  
Author(s):  
Masanobu Kawai ◽  
Saori Kinoshita ◽  
Shigeki Shimba ◽  
Keiichi Ozono ◽  
Toshimi Michigami

The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism.


Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

Andean blueberries are wild berries grown and consumed in Ecuador which contain high values of bioactive compounds, mainly anthocyanins, with powerful antioxidant activity. The aim of this study was to evaluate the profile and contents of (poly)phenols and carotenoids in Andean blueberry by HPLC-DAD-MSn and determine a wide range of its biological activities. The antioxidant capacity of this fruit was evaluated in vitro by three different methods and in vivo using the zebrafish animal model, also the toxicity effect was determined by the zebrafish embryogenesis test. Besides, the antimicrobial activity and the capacity of Andean blueberry to produce hemagglutination in blood cells were evaluated. Finally, the bioaccessibility of (poly)phenols and related antioxidant capacity were determined in the different phases of an in vitro digestion. The global results indicated no toxicity of Andean blueberry, weakly bacteriostatic activity, and high contents of anthocyanins and antioxidant capacity, which were partially bioaccesible in vitro (~ 50 % at the final intestinal step), contributing to the knowledge of its health benefits for consumers and its potential use in the food and pharmaceutical industry as functional ingredient.


Sign in / Sign up

Export Citation Format

Share Document