insertion locus
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
William R Reid ◽  
Jingyi Lin ◽  
Adeline E Williams ◽  
Rucsanda Juncu ◽  
Ken E Olson ◽  
...  

The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such an approach requires a mechanism to spread these antiviral effectors through a population, for example, by using CRISPR/Cas9-based gene drive systems. Here we report an autonomous single-component gene drive system in Ae. aegypti that is designed for persistent population replacement. Critical to the design of a single-locus autonomous gene drive is that the selected genomic locus be amenable to both gene drive and the appropriate expression of the antiviral effector. In our study, we took a reverse engineering approach to target two genomic loci ideal for the expression of antiviral effectors and further investigated the use of three promoters for Cas9 expression (nanos, β2-tubulin, or zpg) for the gene drive. We found that both promoter selection and genomic target site strongly influenced the efficiency of the drive, resulting in 100% inheritance in some crosses. We also observed the formation of inheritable gene drive blocking indels (GDBI) in the genomic locus with the highest levels of gene drive. Overall, our drive system forms a platform for the further testing of driving antipathogen effector genes through Ae. aegypti populations.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1231
Author(s):  
Adeline E. Williams ◽  
Irma Sanchez-Vargas ◽  
William R. Reid ◽  
Jingyi Lin ◽  
Alexander W.E. Franz ◽  
...  

The resurgence of arbovirus outbreaks across the globe, including the recent Zika virus (ZIKV) epidemic in 2015–2016, emphasizes the need for innovative vector control methods. In this study, we investigated ZIKV susceptibility to transgenic Aedes aegypti engineered to target the virus by means of the antiviral small-interfering RNA (siRNA) pathway. The robustness of antiviral effector expression in transgenic mosquitoes is strongly influenced by the genomic insertion locus and transgene copy number; we therefore used CRISPR/Cas9 to re-target a previously characterized locus (Chr2:321382225) and engineered mosquitoes expressing an inverted repeat (IR) dsRNA against the NS3/4A region of the ZIKV genome. Small RNA analysis revealed that the IR effector triggered the mosquito’s siRNA antiviral pathway in bloodfed females. Nearly complete (90%) inhibition of ZIKV replication was found in vivo in both midguts and carcasses at 7 or 14 days post-infection (dpi). Furthermore, significantly fewer transgenic mosquitoes contained ZIKV in their salivary glands (p = 0.001), which led to a reduction in the number of ZIKV-containing saliva samples as measured by transmission assay. Our work shows that Ae. aegypti innate immunity can be co-opted to engineer mosquitoes resistant to ZIKV.


2018 ◽  
Author(s):  
Fatih Karaoglanoglu ◽  
Camir Ricketts ◽  
Marzieh Eslami Rasekh ◽  
Ezgi Ebren ◽  
Iman Hajirasouliha ◽  
...  

AbstractMany algorithms aimed at characterizing genomic structural variation (SV) have been developed since the inception of high-throughput sequencing. However, the full spectrum of SVs in the human genome is not yet assessed. Most of the existing methods focus on discovery and genotyping of deletions, insertions, and mobile elements. Detection of balanced SVs with no gain or loss of genomic segments (e.g., inversions) is particularly a challenging task. Long read sequencing has been leveraged to find short inversions but there is still a need to develop methods to detect large genomic inversions. Furthermore, currently there are no algorithms to predict the insertion locus of large interspersed segmental duplications.Here we propose novel algorithms to characterize large (>40Kbp) interspersed segmental duplications and (>80Kbp) inversions using Linked-Read sequencing data. Linked-Read sequencing provides long range information, where Illumina reads are tagged with barcodes that can be used to assign short reads to pools of larger (30-50 Kbp) molecules. Our methods rely on split molecule sequence signature that we have previously described [11]. Similar to the split read, split molecules refer to large segments of DNA that span an SV breakpoint. Therefore, when mapped to the reference genome, the mapping of these segments would be discontinuous. We redesign our earlier algorithm, VALOR, to specifically leverage Linked-Read sequencing data to discover large inversions and characterize interspersed segmental duplications. We implement our new algorithms in a new software package, called VALOR2.AvailabilityVALOR2 is available at https://github.com/BilkentCompGen/valor.


2007 ◽  
Vol 97 (9) ◽  
pp. 1040-1048 ◽  
Author(s):  
Philippe Tanguay ◽  
Kristin Tangen ◽  
Colette Breuil

Wood sapstain, a cosmetic defect that results in significant economical loss to forest-products industries, is caused by mycelial melanization of the wood-colonizing ophiostomatoid fungi. To improve our understanding of how melanin biosynthesis is regulated in the cosmopolitan sapstaining fungus, Ophiostoma piceae, we used insertional mutagenesis. Insertional mutants were generated by restriction enzyme-mediated integration (REMI) and Agrobacterium-mediated integration (AMI). We screened 1,053 REMI and 1,083 AMI transformants and found 30 mutants with impaired growth or pigmentation. We characterized four AMI transformants in more detail, in which the T-DNA integrated at a single locus. The albino mutant TOPA45 had incorporated the T-DNA in a polyketide synthase gene (PKS1). The mutants TOPA1 and TOPA1076 displayed reduced pigmentation. In TOPA1, the T-DNA was inserted into a gene that encodes a putative protein kinase activator whereas, for TOPA1076, it was inserted into a gene that encodes a protein with unknown function. Finally, the vegetative hyphae of mutant TOPA814 were not melanized, whereas the synnemata displayed the same level of pigmentation as the wild type. In the TOPA814 mutant, segregation analysis revealed that the mutant phenotype was not linked to the T-DNA insertion locus but to a translocation from the PIG1 locus to the left border of the T-DNA. The protein predicted for the PIG1 locus had a middle homology region that was specific to fungal transcription factors.


2002 ◽  
Vol 76 (9) ◽  
pp. 4364-4369 ◽  
Author(s):  
Monica Stewart ◽  
Nancy MacKay ◽  
Ewan R. Cameron ◽  
James C. Neil

ABSTRACT The Dsi1 locus was identified as a common integration site for Moloney murine leukemia virus (MLV) in rat thymic lymphomas, but previous efforts to identify a gene affected by these insertions were unsuccessful. We considered the Runx3 gene a potential candidate on the basis of genetic mapping which showed that Dsi1 and Runx3 are closely linked on mouse chromosome 4 and the precedent of the related Runx2 gene, which emerged recently as a Myc-collaborating gene activated by retroviral insertion in thymic lymphomas of CD2-MYC mice. We now report the physical mapping of the Dsi1 locus to a site 30 kb upstream of the distal (P1) promoter of the murine Runx3 gene. Comparison with the syntenic region of human chromosome 1 shows that the next gene is over 250 kb 5′ to Runx3, suggesting that Runx3 may be the primary target of retroviral insertions at Dsi1. Screening of CD2-MYC lymphomas for rearrangements at Dsi1 revealed a tumor cell line harboring an MLV provirus at this locus, in the orientation opposite that of Runx3. Proviral insertion was associated with very high levels of expression of Runx3, with a preponderance of transcripts arising at the P1 promoter. These results confirm that Runx3 is a target of retroviral insertions at Dsi1 and indicate that Runx3 can act as an alternative to Runx2 as a Myc-collaborating gene in thymic lymphoma.


1996 ◽  
Vol 77 (3) ◽  
pp. 443-446 ◽  
Author(s):  
M. Stewart ◽  
A. Terry ◽  
M. O'Hara ◽  
E. Cameron ◽  
D. Onions ◽  
...  

1993 ◽  
Vol 17 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Y. Haupt ◽  
G. Barri ◽  
J. M. Adams

Sign in / Sign up

Export Citation Format

Share Document