santa cruz genome
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
pp. 1-10
Author(s):  
Kerri Bosfield ◽  
Jullianne Diaz ◽  
Eyby Leon

Pure distal duplications of 7q have rarely been described in the medical literature. The term pure refers to duplications that occur without an accompanying clinically significant deletion. Pure 7q duplications of various segments have previously been reported in the literature; however, pure distal 7q duplications have only been reported in 21 cases. Twenty of these earlier reports described patients who were identified via karyotype and 1 recently by microarray. Cases have also been reported in genomic databases such as DECIPHER and the University of California Santa Cruz genome browser. We have reviewed 7 additional cases with distal 7q duplications from these databases and compared them to 7 previously reported distal 7q duplication cases to uncover common features including global developmental delay, frontal bossing, macrocephaly, seizures, kyphoscoliosis/skeletal anomalies, and microretrognathia/palatal anomalies. In this case, we describe a 4-year-old boy with a 30.8-Mb pure duplication of 7q32.1q36.3. Newly reported features associated with this duplication include intermittent dystonic posturing, increased behavioral irritability, eosinophilic esophagitis, segmental vertebral anomalies, and segmental intermittent limb cyanosis. We highlight the importance of using publicly available databases to describe rare genetic syndromes and to better characterize the features of pure distal 7q duplications and further postulate that duplication of this region represents a recognizable macrocephalic neurodevelopmental syndrome.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 736 ◽  
Author(s):  
Melanie Bahlo ◽  
Mark F Bennett ◽  
Peter Degorski ◽  
Rick M Tankard ◽  
Martin B Delatycki ◽  
...  

Short tandem repeats (STRs), also known as microsatellites, are commonly defined as consisting of tandemly repeated nucleotide motifs of 2–6 base pairs in length. STRs appear throughout the human genome, and about 239,000 are documented in the Simple Repeats Track available from the UCSC (University of California, Santa Cruz) genome browser. STRs vary in size, producing highly polymorphic markers commonly used as genetic markers. A small fraction of STRs (about 30 loci) have been associated with human disease whereby one or both alleles exceed an STR-specific threshold in size, leading to disease. Detection of repeat expansions is currently performed with polymerase chain reaction–based assays or with Southern blots for large expansions. The tests are expensive and time-consuming and are not always conclusive, leading to lengthy diagnostic journeys for patients, potentially including missed diagnoses. The advent of whole exome and whole genome sequencing has identified the genetic cause of many genetic disorders; however, analysis pipelines are focused primarily on the detection of short nucleotide variations and short insertions and deletions (indels). Until recently, repeat expansions, with the exception of the smallest expansion (SCA6), were not detectable in next-generation short-read sequencing datasets and would have been ignored in most analyses. In the last two years, four analysis methods with accompanying software (ExpansionHunter, exSTRa, STRetch, and TREDPARSE) have been released. Although a comprehensive comparative analysis of the performance of these methods across all known repeat expansions is still lacking, it is clear that these methods are a valuable addition to any existing analysis pipeline. Here, we detail how to assess short-read data for evidence of expansions, reviewing all four methods and outlining their strengths and weaknesses. Implementation of these methods should lead to increased diagnostic yield of repeat expansion disorders for known STR loci and has the potential to detect novel repeat expansions.


Sign in / Sign up

Export Citation Format

Share Document