genome browser
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 36)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Andrew J Harris ◽  
Nicole M Foley ◽  
Tiffani L Williams ◽  
William J Murphy

Tree House Explorer (THEx) is a genome browser that integrates phylogenomic data and genomic annotations into a single interactive platform for combined analysis. THEx allows users to visualize genome-wide variation in evolutionary histories and genetic divergence on a chromosome-by-chromosome basis, with continuous sliding window comparisons to gene annotations, recombination rates, and other user-specified, highly customizable feature annotations. THEx provides a new platform for interactive phylogenomic data visualization to analyze and interpret the diverse evolutionary histories woven throughout genomes. Hosted on Conda, THEx integrates seamlessly into new or pre-existing workflows.


2021 ◽  
Author(s):  
Phillip Wyss ◽  
Carol Song ◽  
Minou Bina

In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs that occurred as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. Furthermore, by creating plots for displaying the density of these overlaps, it became possible to locate known and candidate ICRs in mouse and human genomic DNA. Since genomic imprinting impacts many developmental and key physiological processes, we performed genome-wide analyses to create plots displaying the density of the CpG-rich motifs (ZFBS-morph overlaps) along Bos Taurus chromosomal DNA. We tailored our datasets so that they could be displayed on the UCSC genome browser (the build bosTau8). On the genome browser, we could view the ZFP57 binding sites, the ZFBS-morph overlaps, and peaks in the density-plots in the context of cattle RefSeq Genes, Non-Cow RefSeq Genes, CpG islands, and Single nucleotide polymorphisms (SNPs). Our datasets revealed the correspondence of peaks in plots to known and deduced ICRs in Bos Taurus genomic DNA. We illustrate that by uploading our datasets onto the UCSC genome browser, we could discover candidate ICRs in cattle DNA. In enlarged views, we could pinpoint the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qihua Liang ◽  
Stefano Lonardi

Abstract Background The pan-genome of a species is the union of the genes and non-coding sequences present in all individuals (cultivar, accessions, or strains) within that species. Results Here we introduce PGV, a reference-agnostic representation of the pan-genome of a species based on the notion of consensus ordering. Our experimental results demonstrate that PGV enables an intuitive, effective and interactive visualization of a pan-genome by providing a genome browser that can elucidate complex structural genomic variations. Conclusions The PGV software can be installed via conda or downloaded from https://github.com/ucrbioinfo/PGV. The companion PGV browser at http://pgv.cs.ucr.edu can be tested using example bed tracks available from the GitHub page.


Author(s):  
Anna Benet-Pagès ◽  
Kate Rosenbloom ◽  
Luis Nassar ◽  
Christopher Lee ◽  
Brian Raney ◽  
...  

The UCSC Genome Browser has been an important tool for genomics and clinical genetics since the sequence of the human genome was first released in 2000. As it has grown in scope to display more types of data it has also grown more complicated. The data, which are dispersed at many locations worldwide, are collected into one view on the Browser, where the graphical interface presents the data in one location. This supports the expertise of the researcher to interpret variants in the genome. Because the analysis of Single Nucleotide Variants (SNVs) and Copy Number Variants (CNVs) require interpretation of data at very different genomic scales, different data resources are required. We present here several Recommended Track Sets designed to facilitate the interpretation of variants in the clinic, offering quick access to datasets relevant to the appropriate scale.


Author(s):  
José Gonçalves-Dias ◽  
Markus G Stetter

Abstract The combination of genomic, physiological, and population genetic research has accelerated the understanding and improvement of numerous crops. For non-model crops the lack of interdisciplinary research hinders their improvement. Grain amaranth is an ancient nutritious pseudocereal that has been domesticated three times in different regions of the Americas. We present and employ PopAmaranth, a population genetic genome browser, which provides an accessible representation of the genetic variation of the three grain amaranth species (A. hypochondriacus, A. cruentus, and A. caudatus) and two wild relatives (A. hybridus and A. quitensis) along the A. hypochondriacus reference sequence. We performed population-scale diversity and selection analysis from whole-genome sequencing data of 88 curated genetically and taxonomically unambiguously classified accessions. We employ the platform to show that genetic diversity in the water stress-related MIF1 gene declined during amaranth domestication and provide evidence for convergent saponin reduction between amaranth and quinoa. PopAmaranth is available through amaranthGDB at amaranthgdb.org/popamaranth.html.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huihui Li ◽  
Mingzhe Xie ◽  
Yan Wang ◽  
Ludong Yang ◽  
Zhi Xie ◽  
...  

AbstractriboCIRC is a translatome data-oriented circRNA database specifically designed for hosting, exploring, analyzing, and visualizing translatable circRNAs from multi-species. The database provides a comprehensive repository of computationally predicted ribosome-associated circRNAs; a manually curated collection of experimentally verified translated circRNAs; an evaluation of cross-species conservation of translatable circRNAs; a systematic de novo annotation of putative circRNA-encoded peptides, including sequence, structure, and function; and a genome browser to visualize the context-specific occupant footprints of circRNAs. It represents a valuable resource for the circRNA research community and is publicly available at http://www.ribocirc.com.


2021 ◽  
Author(s):  
Huihui Li ◽  
Mingzhe Xie ◽  
Yan Wang ◽  
Ludong Yang ◽  
Zhi Xie ◽  
...  

riboCIRC is a translatome data-oriented circRNA database specifically designed for hosting, exploring, analyzing, and visualizing translatable circRNAs from multi-species. The database provides a comprehensive repository of computationally predicted ribosome-associated circRNAs, a manually curated collection of experimentally verified translated circRNAs, an evaluation of cross-species conservation of translatable circRNAs, a systematic de novo annotation of putative circRNA-encoded peptides, including sequence, structure, and function, and a genome browser to visualize the context-specific occupant footprints of circRNAs. It represents a valuable resource for the circRNA research community and is publicly available at http://www.ribocirc.com.


2021 ◽  
Vol 18 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Visam Gültekin ◽  
Jens Allmer

Abstract SARS-CoV-2 has spread worldwide and caused social, economic, and health turmoil. The first genome assembly of SARS-CoV-2 was produced in Wuhan, and it is widely used as a reference. Subsequently, more than a hundred additional SARS-CoV-2 genomes have been sequenced. While the genomes appear to be mostly identical, there are variations. Therefore, an alignment of all available genomes and the derived consensus sequence could be used as a reference, better serving the science community. Variations are significant, but representing them in a genome browser can become, especially if their sequences are largely identical. Here we summarize the variation in one track. Other information not currently found in genome browsers for SARS-CoV-2, such as predicted miRNAs and predicted TRS as well as secondary structure information, were also added as tracks to the consensus genome. We believe that a genome browser based on the consensus sequence is better suited when considering worldwide effects and can become a valuable resource in the combating of COVID-19. The genome browser is available at http://cov.iaba.online.


2020 ◽  
Author(s):  
José Gonçalves-Dias ◽  
Markus G Stetter

The last decades of genomic, physiological, and population genetic research have accelerated the understanding and improvement of a numerous crops. The transfer of methods to minor crops could accelerate their improvement if knowledge is effectively shared between disciplines. Grain amaranth is an ancient nutritious pseudocereal from the Americas that is regaining importance due to its high protein content and favorable amino acid and micronutrient composition. To effectively combine genomic and population genetic information with molecular genetics, plant physiology, and use it for interdisciplinary research and crop improvement, an intuitive interaction for scientists across disciplines is essential. Here, we present PopAmaranth, a population genetic genome browser, which provides an accessible representation of the genetic variation of the three grain amaranth species (A. hypochondriacus, A. cruentus, and A. caudatus) and two wild relatives (A. hybridus and A. quitensis) along the A. hypochondriacus reference sequence. We performed population-scale diversity and selection analysis from whole-genome sequencing data of 88 curated genetically and taxonomically unambiguously classified accessions. We incorporate the domestication history of the three grain amaranths to make an evolutionary perspective for candidate genes and regions available. We employ the platform to show that genetic diversity in the water stress-related MIF1 gene declined during amaranth domestication and provide evidence for convergent saponin reduction between amaranth and quinoa. These examples show that our tool enables the detailed study of individual genes, provides target regions for breeding efforts and can enhance the interdisciplinary integration of population genomic findings across species. PopAmaranth is available through amaranthGDB at amaranthgdb.org/popamaranth.htmlSignificanceSharing population genetic results between disciplines can facilitate interdisciplinary research and accelerate the improvement of crops. Since the onset of genome sequencing online genome browser platforms have provide access to features of an organisms genetic information. Rarely this has been extended to population-wide summary statistics for evolutionary hypothesis testing. We implemented a population genetic genome browser PopAmaranth for three grain amaranth species and their two wild relatives. The intuitive and user-friendly interface of PopA-maranth makes the genetic diversity of the species complex available to broad audience of biologists across disciplines. We show how our tool can be used to study convergence across distant genera and find signals of past selection in domestication and stress related genes. Community platforms and genome browsers are an integrative element of numerous study systems. PopAmaranth can serve as template for other research communities to integrate and share their results.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1046-D1057 ◽  
Author(s):  
Jairo Navarro Gonzalez ◽  
Ann S Zweig ◽  
Matthew L Speir ◽  
Daniel Schmelter ◽  
Kate R Rosenbloom ◽  
...  

Abstract For more than two decades, the UCSC Genome Browser database (https://genome.ucsc.edu) has provided high-quality genomics data visualization and genome annotations to the research community. As the field of genomics grows and more data become available, new modes of display are required to accommodate new technologies. New features released this past year include a Hi-C heatmap display, a phased family trio display for VCF files, and various track visualization improvements. Striving to keep data up-to-date, new updates to gene annotations include GENCODE Genes, NCBI RefSeq Genes, and Ensembl Genes. New data tracks added for human and mouse genomes include the ENCODE registry of candidate cis-regulatory elements, promoters from the Eukaryotic Promoter Database, and NCBI RefSeq Select and Matched Annotation from NCBI and EMBL-EBI (MANE). Within weeks of learning about the outbreak of coronavirus, UCSC released a genome browser, with detailed annotation tracks, for the SARS-CoV-2 RNA reference assembly.


Sign in / Sign up

Export Citation Format

Share Document