response surface designs
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nam-Ky Nguyen ◽  
Mai Phuong Vuong ◽  
Tung-Dinh Pham

This paper discusses an algorithmic approach to constructing trend-free and orthogonally-blocked response surface designs. The constructed designs have the main effects, 2-factor interactions and second-order effects being orthogonal or near-orthogonal to the nuisance factors such as the time-trend or the blocking factors. The paper also provides a catalogue of (near-) trend-free Box–Behnkens designs and orthogonally blocked Box–Behnkens designs arranged in rows and columns.


Author(s):  
Sulochana B

In this paper, measure of slope rotatability for second order response surface designs using symmetrical unequal block arrangements with two unequal block sizes under tri-diagonal correlation error structure is suggested and illustrated with examples.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wasim Akram ◽  
Navneet Garud

Abstract Background The overall objective was to prepare a highly accurate nanocarrier system of mesalamine for the treatment of ulcerative colitis with increased therapeutic efficacy and targeting. In the formulation of nanocarrier systems, optimization is a critical process for understanding nanoformulation variables and quality aspects. The goal of the present work was to determine the effect of independent variables, i.e., the concentrations of chitosan, carboxymethyl inulin (CMI), and the drug on the response variables, i.e., particle size and percent entrapment efficiency of the mesalamine-loaded nanoparticle using the Box Behnken design (BBD). The correlation between the independent and dependent variables was investigated using the Design Expert generated mathematical equations, contour, and response surface designs. Result An optimized batch was developed using the ionotropic gel method with selected independent variables (A: + 1 level, B: 0 level, C: − 1 level) and the developed nanoparticles had a particle size of 184.18 nm, zeta potential 26.54 mV, and entrapment efficiency 88.58%. The observed responses were remarkably similar to the predicted values. The morphological studies revealed that the formulated nanoparticles were spherical, and the results of the FTIR and DSC studies indicated the drug-polymer compatibility. The nanoparticle showed less than 5% release in the pH 1.2. In the colonic region (pH 7.4), more than 80 % of the medication was released after 24 h. The kinetics study showed that the Higuchi and Korsemeyer-Peppas models had R2 values of 0.9426 and 0.9784 respectively, for the developed formulation indicating linearity, as revealed by the plots. This result justified the sustained release behavior of the formulation. Conclusion The mesalamine-loaded chitosan-CMI nanoparticle has been successfully developed using the ionotropic gelation method. The nanoparticles developed in this study were proposed to deliver the drug to its desired site. The developed nanoparticles were likely to have a small particle size with positive zeta potential and high percent drug entrapment. It could be stated from the results that BBD can be an active way for optimizing the formulation and that nanoparticles can be a potential carrier for delivering therapeutics to the colon.


Author(s):  
M. Hemavathi ◽  
Shashi Shekhar ◽  
Eldho Varghese ◽  
Seema Jaggi ◽  
Bikas Sinha ◽  
...  

2021 ◽  
Author(s):  
Nefise Gönül Şengöz

Predicting properties of end product from known properties of raw material is an important part of quality control in manufacturing. Main concept in this research is to reach a specified property of end product from known properties of raw material by attaining response surface designs with feasible region. The Ne20–19.21 T/inch yarn breaking strength (response, desired value 450 cNs) is acquired from cotton fiber properties (variables). The relationship between response and variables are obtained in response surface drawings and contour plots. The area showing the desired value in contour plots are colored in lilac and are intersected to obtain the feasible regions. By reading backwards from the feasible region borders, the variable value ranges are reached which will give the desired value of the response is obtained. When this information to start the yarn production is ready, the cotton lots containing these fiber property value ranges will be bought or from raw material in hand we will be read which yarn breaking strength will occur at the end of production. It was concluded that response surface designs with feasible region are quick, practical, and effective tools, provide valuable results, contribute a lot to quality control, and are beneficial in textile quality control.


Sign in / Sign up

Export Citation Format

Share Document