Nature Astronomy
Latest Publications


TOTAL DOCUMENTS

1538
(FIVE YEARS 895)

H-INDEX

47
(FIVE YEARS 27)

Published By Springer Nature

2397-3366

2022 ◽  
Author(s):  
Zhifu Chen ◽  
Zhicheng He ◽  
Luis C. Ho ◽  
Qiusheng Gu ◽  
Tinggui Wang ◽  
...  

2022 ◽  
Author(s):  
Ruobing Dong ◽  
Hauyu Baobab Liu ◽  
Nicolás Cuello ◽  
Christophe Pinte ◽  
Péter Ábrahám ◽  
...  

2022 ◽  
Author(s):  
David Kipping ◽  
Steve Bryson ◽  
Chris Burke ◽  
Jessie Christiansen ◽  
Kevin Hardegree-Ullman ◽  
...  

AbstractExomoons represent a crucial missing puzzle piece in our efforts to understand extrasolar planetary systems. To address this deficiency, we here describe an exomoon survey of 70 cool, giant transiting exoplanet candidates found by Kepler. We identify only one exhibiting a moon-like signal that passes a battery of vetting tests: Kepler-1708 b. We show that Kepler-1708 b is a statistically validated Jupiter-sized planet orbiting a Sun-like quiescent star at 1.6 au. The signal of the exomoon candidate, Kepler-1708 b-i, is a 4.8σ effect and is persistent across different instrumental detrending methods, with a 1% false-positive probability via injection–recovery. Kepler-1708 b-i is ~2.6 Earth radii and is located in an approximately coplanar orbit at ~12 planetary radii from its ~1.6 au Jupiter-sized host. Future observations will be necessary to validate or reject the candidate.


2022 ◽  
Author(s):  
Alexander J. Evans ◽  
Sonia M. Tikoo
Keyword(s):  

2022 ◽  
Author(s):  
Philipp Arras ◽  
Philipp Frank ◽  
Philipp Haim ◽  
Jakob Knollmüller ◽  
Reimar Leike ◽  
...  

AbstractThe immediate vicinity of an active supermassive black hole—with its event horizon, photon ring, accretion disk and relativistic jets—is an appropriate place to study physics under extreme conditions, particularly general relativity and magnetohydrodynamics. Observing the dynamics of such compact astrophysical objects provides insights into their inner workings, and the recent observations of M87* by the Event Horizon Telescope1–6 using very-long-baseline interferometry techniques allows us to investigate the dynamical processes of M87* on timescales of days. Compared with most radio interferometers, very-long-baseline interferometry networks typically have fewer antennas and low signal-to-noise ratios. Furthermore, the source is variable, prohibiting integration over time to improve signal-to-noise ratio. Here, we present an imaging algorithm7,8 that copes with the data scarcity and temporal evolution, while providing an uncertainty quantification. Our algorithm views the imaging task as a Bayesian inference problem of a time-varying brightness, exploits the correlation structure in time and reconstructs (2 + 1 + 1)-dimensional time-variable and spectrally resolved images. We apply this method to the Event Horizon Telescope observations of M87*9 and validate our approach on synthetic data. The time- and frequency-resolved reconstruction of M87* confirms variable structures on the emission ring and indicates extended and time-variable emission structures outside the ring itself.


2021 ◽  
Author(s):  
Bradley M. S. Hansen

Sign in / Sign up

Export Citation Format

Share Document