event horizon
Recently Published Documents


TOTAL DOCUMENTS

708
(FIVE YEARS 208)

H-INDEX

49
(FIVE YEARS 13)

Author(s):  
Diego Fernández-Silvestre ◽  
Joshua Foo ◽  
Michael R.R Good

Abstract The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence (ABC) of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.


2022 ◽  
Author(s):  
Philipp Arras ◽  
Philipp Frank ◽  
Philipp Haim ◽  
Jakob Knollmüller ◽  
Reimar Leike ◽  
...  

AbstractThe immediate vicinity of an active supermassive black hole—with its event horizon, photon ring, accretion disk and relativistic jets—is an appropriate place to study physics under extreme conditions, particularly general relativity and magnetohydrodynamics. Observing the dynamics of such compact astrophysical objects provides insights into their inner workings, and the recent observations of M87* by the Event Horizon Telescope1–6 using very-long-baseline interferometry techniques allows us to investigate the dynamical processes of M87* on timescales of days. Compared with most radio interferometers, very-long-baseline interferometry networks typically have fewer antennas and low signal-to-noise ratios. Furthermore, the source is variable, prohibiting integration over time to improve signal-to-noise ratio. Here, we present an imaging algorithm7,8 that copes with the data scarcity and temporal evolution, while providing an uncertainty quantification. Our algorithm views the imaging task as a Bayesian inference problem of a time-varying brightness, exploits the correlation structure in time and reconstructs (2 + 1 + 1)-dimensional time-variable and spectrally resolved images. We apply this method to the Event Horizon Telescope observations of M87*9 and validate our approach on synthetic data. The time- and frequency-resolved reconstruction of M87* confirms variable structures on the emission ring and indicates extended and time-variable emission structures outside the ring itself.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Jie Zhang ◽  
Menquan Liu ◽  
Zhie Liu ◽  
Shuzheng Yang

AbstractThe Kinnersley spacetime not only describes a non-spherical symmetric, non-stationary and accelerating black hole, but also can be used to explore the characteristics of collision of two black holes because it has two horizons: the Rindler horizon and the event horizon. Previous research shows Rindler horizon and the event horizon cannot touch due to violation of the third law of thermodynamics. By solving a fermion dynamical equation including the Lorentz dispersion relation, we obtain a modified radiation temperature at the event horizon of the black hole, as well as the colliding temperature at the touch point of Rindler horizon and the event horizon. We find the temperature at the touch point is not equal to zero if $${\dot{r}}_H\ne 0$$ r ˙ H ≠ 0 . This result indicates that the event horizon and Rindler horizon can collide without violation of the third law of thermodynamics when Lorentz dispersion relation is considered.


Author(s):  
Mohammed Al-Fadhli

The recent observation of the G2 gas cloud orbit around the galactic centre has challenged the model of a mere supermassive black hole that should have destroyed it. In addition, the Planck Legacy 2018 (PL18) release has preferred a positively curved early Universe with a confidence level exceeding 99%. In this study, the formation of a galaxy from the collapse of a supermassive gas cloud in the early Universe is modelled based on extended field equations as a 4D relativistic cloud-world that flows and spins through a 4D conformal bulk of an initial positive curvature considering the preference of the PL18 release. Owning to the curved background, this scenario of galaxy formation reveals that the core of the galaxy undergoes a forced vortex formation with a central event horizon leading to opposite vortices (traversable wormholes) that are spatially shrinking through evolving in the conformal time. It indicates that the galaxy and its core are formed at the same process where the surrounding gas clouds form the spiral arms due to the frame-dragging induced by the fast-rotating core. Further, the bulk conformal curvature evolution demonstrates the fast orbital speed of outer stars owing to external fields exerted on galaxies as they travel through conformally curved space-time. Accordingly, the G2 gas cloud that only faced the drag effects could be explained if its orbit is around the vortex but at a distance from the central event horizon. These findings could explain the fast orbital speed of outer stars where the galaxy formation and its core simultaneously could explain the formation of the supermassive compact galaxy cores with a mass of ~109 M⊙ at just 6% of the current Universe age and thus could resolve the black hole hierarchy problem.


2021 ◽  
Vol 52 (4) ◽  
pp. 6-10
Author(s):  
Frederic Green

The future prospects for anyone falling into a black hole are bleak. For one thing, there is no chance (according to our present state of knowledge) of ever getting out again. Worse, one is facing certain destruction when one meets the "singularity" (or its inconceivably dense physical manifestation, whatever that may be) inside. However, there is an "event horizon," the point of no return, separating the overly curious infalling astronaut from the doom he or she faces at the singularity. Suppose Alice the Astronaut wants to see what's behind the horizon (never mind the consequences). How much time would Alice have to look around and see what's happening, before reaching the end of her worldline? Conventional wisdom, until relatively recently, was that she would have some amount of time, perhaps hours. Passing the event horizon of a supermassive black hole would not seem like any kind of a milestone to the infalling individual; it is only an outside observer who would notice something out of the ordinary.


Author(s):  
Leonid Verozub

In this paper, we investigate the question of whether the generally accepted interpretation of the supermassive object in M87, investigated by EHT collaboration, is the only possible one. There are grounds for this, in particular, due to the detection of a magnetic field in its vicinity. For this purpose, the stability of self-gravitating objects is investigated based on the correct definition of the energy of gravitation in the framework of the bi-metric approach to the theory.


Author(s):  
Run-Qiu Yang ◽  
Rong-Gen Cai ◽  
Li Li

Abstract We show that the number of horizons of static black holes can be strongly constrained by energy conditions of matter fields. After a careful clarification on the ``interior'' of a black hole, we prove that if the interior of a static black hole satisfies strong energy condition or null energy condition, there is at most one non-degenerated inner Killing horizon behind the non-degenerated event horizon. Our result offers some universal restrictions on the number of horizons. Interestingly and importantly, it also suggests that matter not only promotes the formation of event horizon but also prevents the appearance of multiple horizons inside black holes. Furthermore, using the geometrical construction, we obtain a radially conserved quantity which is valid for general static spacetimes.


2021 ◽  
pp. 35-52
Author(s):  
Jessie Beier

AbstractIn April 2019, the Event Horizon Telescope (EHT) project released an unprecedented image of a supermassive black hole at the centre of galaxy Messier 87. The image, which shows a dark disc outlined by swirling hot gas circling the black hole’s event horizon, exhibits a 55 million-year-old cosmic event in the Virgo galaxy cluster—a void of stellar mass measuring some 6.5 billion times that of our sun. Situated within today’s (Good) Anthropocene scenario, characterized as it is by both the rise of an inhospitable planet but also a range of good vibes and affirmative mantras, this tracing explores this newly “discovered” black hole in terms of the unthinkable questions and speculative trajectories it raises for education and its futures. Through a series of forays into astrophysics, historical examples of cosmic imaging, and further exploration of the image created by EHT, this tracing outlines the black hole and its apparent horizons in order to propose a strange vantage point from which pedagogical problem-posing might be interrupted, mutated, and relaunched. By turning to that which lies outside of the traditional science classroom—beyond the school, beyond curriculum, indeed, beyond the planet itself—this tracing seeks to probe this black hole event in terms of its weird and weirding pedagogical trajectories so as to speculate on unthought possibilities for resituating (science) education in the age of the Anthropocene.


Sign in / Sign up

Export Citation Format

Share Document