coexistence region
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
pp. 123201
Author(s):  
E A Jagla

Abstract The yielding transition of amorphous materials is studied with a two-dimensional Hamiltonian model that allows both shear and volume deformations. The model is investigated as a function of the relative value of the bulk modulus B with respect to the shear modulus μ. When the ratio B/μ is small enough, the yielding transition becomes discontinuous, yet reversible. If the system is driven at constant strain rate in the coexistence region, a spatially localized shear band is observed while the rest of the system remains blocked. The crucial role of volume fluctuations in the origin of this behavior is clarified in a mean field version of the model.


Extremes ◽  
2021 ◽  
Author(s):  
Nicolas Chenavier ◽  
Christian Hirsch

AbstractPersistent homology captures the appearances and disappearances of topological features such as loops and cavities when growing disks centered at a Poisson point process. We study extreme values for the lifetimes of features dying in bounded components and with birth resp. death time bounded away from the threshold for continuum percolation and the coexistence region. First, we describe the scaling of the minimal lifetimes for general feature dimensions, and of the maximal lifetimes for cavities in the Čech filtration. Then, we proceed to a more refined analysis and establish Poisson approximation for large lifetimes of cavities and for small lifetimes of loops. Finally, we also study the scaling of minimal lifetimes in the Vietoris-Rips setting and point to a surprising difference to the Čech filtration.


2021 ◽  
Vol 57 (4) ◽  
Author(s):  
Pascal J. Gunkel ◽  
Christian S. Fischer

AbstractWe update our previous results for (pseudo-)scalar mesons at zero temperature and finite quark chemical potential and generalize the investigation to include (axial-)vector mesons. We determine bound-state properties such as meson masses and decay constants up to chemical potentials far in the first-order coexistence region. To extract the bound-states properties, we solve the Bethe-Salpeter equation and utilize Landau-gauge quark and gluon propagators obtained from a coupled set of (truncated) Dyson-Schwinger equations with $$N_{\text{ f }}=2+1$$ N f = 2 + 1 dynamical quark flavors at finite chemical potential and vanishing temperature. For multiple (pseudo-)scalar and (axial-)vector mesons, we observe constant masses and decay constants for chemical potentials up to the coexistence region of the first-order phase transition thus verifying explicitly the Silver-Blaze property of QCD. Inside the coexistence region the pion becomes more massive and its decay constants decrease, whereas corresponding quantities for the (axial-)vector mesons remain (almost) constant.


2021 ◽  
Vol 1863 (4) ◽  
pp. 183552
Author(s):  
Naomi Hamada ◽  
Sukriti Gakhar ◽  
Marjorie L. Longo

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Suzanne K. Wallace ◽  
Ambroise van Roekeghem ◽  
Anton S. Bochkarev ◽  
Javier Carrasco ◽  
Alexander Shapeev ◽  
...  

Author(s):  
Eiji Hatta ◽  
Ko Nihei

A statistical mechanical deconvolution procedure for the experimentally measured surface pressure –area isotherms has been presented to obtain the surface pressure dependence of the liquid expanded (LE) and liquid condensed...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Akihiko Mougi

AbstractThe current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coexistence theory-diversity of biological rhythms. I show that diversity in activity cycles plays a key role in coexistence of competing species, using a two predator-one prey system with diel, monthly, and annual cycles for predator foraging. Competitive exclusion always occurs without activity cycles. Activity cycles do, however, allow for coexistence. Furthermore, each activity cycle plays a different role in coexistence, and coupling of activity cycles can synergistically broaden the coexistence region. Thus, with all activity cycles, the coexistence region is maximal. The present results suggest that polyrhythmic changes in biological activity in response to the earth’s rotation and revolution are key to competitive coexistence. Also, temporal niche shifts caused by environmental changes can easily eliminate competitive coexistence.


2020 ◽  
Author(s):  
Hongqin Liu

Abstract The well-known Maxwell construction1 (the equal-area rule, EAR) was devised for vapor liquid equilibrium (VLE) calculation with the van der Waals (vdW) equation of state (EoS)2. The EAR generates an intermediate volume between the saturated liquid and vapor volumes. The trajectory of the intermediate volume over the coexistence region is defined here as the Maxwell crossover, denoted as the M-line, which is independent of EoS. For the vdW or any cubic3 EoS, the intermediate volume corresponds to the “unphysical” root, while other two corresponding to the saturated volumes of vapor and liquid phases, respectively. Due to it’s “unphysical” nature, the intermediate volume has always been discarded. Here we show that the M-line, which turns out to be strictly related to the diameter4 of the coexistence curve, holds the key to solving several major issues. Traditionally the coexistence curve with two branches is considered as the extension of the Widom line5,6-9. This assertion causes an inconsistency in three planes of temperature, pressure and volume. It is found that the M-line is the natural extension of the Widom line into the vapor-liquid coexistence region. As a result, the united single line coherently divides the entire phase space, including the coexistence and supercritical fluid regions, into gas-like and liquid-like regimes in all the planes. Moreover, along the M-line the vdW EoS finds a new perspective to access the second-order transition in a way better aligning with observations and modern theory10. Lastly, by using the feature of the M-line, we are able to derive a highly accurate and analytical proximate solution to the VLE problem with the vdW EoS.


2020 ◽  
Vol Volume 31 - 2019 - CARI 2018 ◽  
Author(s):  
Radhouane Fekih-Salem ◽  
Tewfik Sari

International audience The objective of this study is to analyze a model of the chemostat involving the attachment and detachment dynamics of planktonic and aggregated biomass in the presence of a single resource. Considering the mortality of species, we give a complete analysis for the existence and local stability of all steady states for general monotonic growth rates. The model exhibits a rich set of behaviors with a multiplicity of coexistence steady states, bi-stability, and occurrence of stable limit cycles. Moreover, we determine the operating diagram which depicts the asymptotic behavior of the system with respect to control parameters. It shows the emergence of a bi-stability region through a saddle-node bifurcation and the occurrence of coexistence region through a transcritical bifurcation. Finally, we illustrate the importance of the mortality on the destabilization of the microbial ecosystem by promoting the washout of species. L'objectif de cette étude est d'analyser un modèle du chémostat impliquant la dynamique d'attachement et de détachement de la biomasse planctonique et agrégée en présence d'une seule ressource. En considérant la mortalité des espèces, nous donnons une analyse complète de l'existence et de la stabilité locale de tous les équilibres pour des taux de croissance monotones. Le modèle pré-sente un ensemble riche de comportements avec multiplicité d'équilibres de coexistence, bi-stabilité et apparition des cycles limites stables. De plus, nous déterminons le diagramme opératoire qui dé-crit le comportement asymptotique du système par rapport aux paramètres de contrôle. Il montre l'émergence d'une région de bi-stabilité via une bifurcation noeud col et l'occurrence d'une région de coexistence via une bifurcation transcritique. Enfin, nous illustrons l'importance de la mortalité sur la déstabilisation de l'écosystème microbien en favorisant le lessivage des espèces.


2020 ◽  
Vol 711 ◽  
pp. 134752
Author(s):  
Haizhu Shi ◽  
Jingjing Wang ◽  
Jie Yuan ◽  
Xiaopei Tan ◽  
Xinxing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document