Journal of Theoretical, Computational and Applied Mechanics
Latest Publications


TOTAL DOCUMENTS

2
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

Published By Centre Pour La Communication Scientifique Directe (CCSD)

2726-6141

Author(s):  
Hervé Trumel ◽  
François Willot ◽  
Thomas Peyres ◽  
Maxime Biessy ◽  
François Rabette

The works deals with a macroscopically isotropic energetic material based on triamino-trinitrobenzene (TATB) crystals bonded with a small volume fraction of a thermoplastic polymer. This material is shown experimentally to display an irreversible thermal expansion behavior characterized by dilatancy and variations of its thermal expansion coefficient when heated or cooled outside a narrow reversibility temperature range. The analysis of cooling results suggests the existence of residual stresses in the initial state, attributed to the manufacturing process. Microstructure-level FFT computations including the very strong anisotropic thermoelastic TATB crystal response and temperature-dependent binder plasticity, show that strong internal stresses develop in the disoriented crystals under thermal load, either heating or cooling. Upon cooling, binder plastic yielding in hindered, thus promoting essentially brittle microcracking, while it is favored upon heating. Despite its low volume fraction, the role of the binder is essential, its plastic yielding causing stress redistribution and residual stresses upon cooling back to ambient.


Author(s):  
Gilles Dusfour ◽  
Dominique Ambard ◽  
Patrick Cañadas ◽  
Simon Lefloch

Up-to-date, back pain is among the most prevalent health issues and generally takes its origins from lesions of the annulus fibrosus (AF). While the AF ex vivo mechanical properties are increasingly well understood, in vivo data are still missing. In particular, very few studies have precisely measured the residual strains within the AF and thus the in vivo deformation state of the AF is still miss-interpreted and miss-evaluated. In this work, we propose an original and robust method for the AF residual strains quantification via digital image correlation technics. Ten pig annulus fibrosus were extracted from adjacent vertebrae followed by a radial incision to release the residual strains. The operations were filmed and then analyzed by a custom digital image correlation software in order to quantify the circumferential, radial and shear residual deformations. Our results show that residual strains are of the same order of magnitude than the in vivo one. The average circumferential strains are in tension on the outer periphery ([3.32; 5.94]%) and in compression on the inner periphery ([−6.4; −1.69]%). The mean radial residual strains are essentially in compression ([−10.4; 2.29]%). Locally, radial and circumferential residual strains can reach really large values up to 40% of compression. The mean shear strains remain very small (−0.04% ± 2.88%). This study also shows that circumferential and radial residual strains evolve linearly along the radius and non-linearly along the angle. We propose a simple model to predict their spatial variations. Our results and methods will allow the quantification of more realistic in vivo strains and stresses within the human intervertebral disc.


Sign in / Sign up

Export Citation Format

Share Document