GAMM Archive for Students
Latest Publications


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By Technische Universitat Chemnitz

2626-9724

2020 ◽  
Vol 2 (1) ◽  
pp. 21-35
Author(s):  
Lukas Hoppe

The present work deals with the numerical crack simulation of fiber-matrix debonding in single fiber pull-out tests. For this purpose, two models are used: a finite element model (FE model) with the cohesive zone approach and a peridynamic model. For calibration a reference experiment is applied. In addition analytical equations are used for reference values. The influence of the model parameters and the material parameters of the cohesive zone model on the force-displacement curve is investigated. Besides the free fiber length, the critical interface strength, the critical energy release rate as well as the initial interface stiffness have a great influence on the force-displacement curve of the pull-out test. From the crack simulation it can be seen that Mode I has an influence on the crack initiation, but further crack growth after initiation is dominated by Mode II. The FE model can be calibrated in a way that the crack initiation point and the maximum force correspond to the reference experiment. The peridynamic model depicts a comparable crack formation process.



2020 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Johannes Wiedemann

This paper provides an introduction to exponential integrators for constrained parabolic systems. In addition, building on existing results, schemes with an expected order of convergence of three and four are established and numerically tested on parabolic problems with nonlinear dynamic boundary conditions. The simulations reinforce the subjected error behaviour.



2020 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Linus Balicki

The low-rank alternating direction implicit (LR-ADI) iteration is an effective method for solving large-scale Lyapunov equations. In the software library pyMOR, solutions to Lyapunov equations play an important role when reducing a model using the balanced truncation method. In this article we introduce the LR-ADI iteration as well as pyMOR, while focusing on its features which are relevant for integrating the iteration into the library. We compare the run time of the iteration's pure pyMOR implementation with those achieved by external libraries available within the pyMOR framework.



2019 ◽  
Vol 1 (1) ◽  
pp. 18-27
Author(s):  
Kai Bergermann

Organic solar cells present a promising alternative for the generation of solar energy at lower material and production costs compared to widely used silicon-based solar cells. The major drawback of organic solar cells currently is a lower rate of energy conversion. Thus many research projects aim to improve the achievable efficiency. In this work a phase field model is used to mathematically describe the morphology evolution of the active layer composed of polymer as electron-donor and fullerene as electron-acceptor. The derivation of a chemical potential term and a surface energy term for the polymer-fullerene solution using the Flory-Huggins theory forms the basis to employ the Cahn-Hilliard equation. After including several specifics of the application in this non-linear partial differential equation of fourth order, an implementation of the model using the FEM solver software FEniCS provides some simulation results that qualitatively match results from the literature.



2019 ◽  
Vol 1 (1) ◽  
pp. 6-17
Author(s):  
Meike Gierig ◽  
Lars Flessing

Resonance tracking is an approach to measuring concentrations, forces or viscosities. Such vibration-based measurements appear to be particularly well suited for applications at the micro- or even nano-scale. In order to monitor more than one parameter or parameter ratio simultaneously, a new kind of resonance tracking is developed with methods from adaptive control. It combines parameter estimation methods and state observers to adopt the resonant excitation to vibrating systems with time-varying parameters. At the same time, these parameters are measured. This approach is exemplified at two single-input-single-output (SISO) systems: a linear spring-mass-damper oscillator and a weakly nonlinear oscillator of Duffing-type.



2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Dominik Kern ◽  
Matthias Bartelt ◽  
Benjamin Unger
Keyword(s):  

This tutorial is a ready-to-run LaTeX example that prospective authors of GAMMAS may substitute with their own content. Moreover, it contains information about some journal policies.



Sign in / Sign up

Export Citation Format

Share Document