Radiations and Living Cells: An Introduction to Radiation Biology, in Which the Action of Penetrating Radiations on the Living Cell is Described, with Special Reference to the Effect on Cell Division in Human Tissues

JAMA ◽  
1953 ◽  
Vol 153 (1) ◽  
pp. 73
RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 18898-18914
Author(s):  
Katsuhiko Ariga ◽  
Rawil Fakhrullin

We can introduce functional structures with various components on a living cell as if architectures were constructed on material surfaces.


2010 ◽  
Vol 5 (1) ◽  
pp. 90-96
Author(s):  
Aleksandr V. Kopylov ◽  
Viktor Ya. Prinz

The possibility of application of the novel class of tubular needles for piercing cells and injecting biological material inside the cell is considered. Stability calculations of tubular (multiwall) needles were made. Calculations were made for the needles with walls formed from hybrid graphene-semiconductor or graphene structures and spires shaped as trapeziform open cylindrical shells. The possibility of mass fabrication of such needles and chips for AFM significantly broadens the range of available operations on the surface and inside the living cell and opens prospects of effective high-precision manipulations with individual cells.


Author(s):  
Daniel M. Dubois ◽  
Stig C. Holmberg

A survey of the Varela automata of autopoiesis is presented. The computation of the Varela program, with initial conditions given by a living cell, is not able to self-maintain the membrane of the living cell. In this chapter, the concept of anticipatory artificial autopoiesis (AAA) is introduced. In this chapter, the authors present a new algorithm of the anticipatory artificial autopoiesis, which extend the Varela automata. The main enhancement consists in defining an asymmetric membrane of the artificial lining cell. The simulations show the anticipatory generation of artificial living cells starting with any initial conditions. The new concept of anticipatory artificial autopoiesis is related to artificial life (Alife) and artificial intelligence (AI). This is a breakthrough in the computational foundation of autopoiesis.


Nanoscale ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 9133-9143 ◽  
Author(s):  
Pablo D. Garcia ◽  
Carlos R. Guerrero ◽  
Ricardo Garcia

Method to measure the viscoelastic properties of a living cell by AFM-based force–distance curves.


2000 ◽  
Vol 14 (1) ◽  
pp. 31-42 ◽  
Author(s):  
S.J. Lugowski ◽  
D.C. Smith ◽  
H. Bonek ◽  
J. Lugowski ◽  
W. Peters ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Fenghui Guan ◽  
Jiayu Yu ◽  
Jie Yu ◽  
Yang Liu ◽  
Ying Li ◽  
...  

The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.


Sign in / Sign up

Export Citation Format

Share Document