bacterial cell
Recently Published Documents


TOTAL DOCUMENTS

3167
(FIVE YEARS 522)

H-INDEX

133
(FIVE YEARS 11)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Alexandre Martins ◽  
Carlos Contreras-Martel ◽  
Manon Janet-Maitre ◽  
Mayara M. Miyachiro ◽  
Leandro F. Estrozi ◽  
...  

2022 ◽  
Author(s):  
Tamar Szoke ◽  
Nitsan Albocher ◽  
Omer Goldberger ◽  
Meshi Barsheshet ◽  
Anat Nussbaum-Shochat ◽  
...  

Liquid-liquid phase separation (LLPS) of proteins was shown in recent years to regulate spatial organization of cell content without the need for membrane encapsulation in eukaryotes and prokaryotes. Yet evidence for the relevance of LLPS for bacterial cell functionality is largely missing. Here we show that the sugar metabolism-regulating clusters, recently shown by us to assemble in the E. coli cell poles by means of the novel protein TmaR, are formed via LLPS. A mutant screen uncovered residues and motifs in TmaR that are important for its condensation. Upon overexpression, TmaR undergoes irreversible liquid-to-solid transition, similar to the transition of disease-causing proteins in human, which impairs bacterial cell morphology and proliferation. Not only does RNA contribute to TmaR phase separation, but by ensuring polar localization and stability of flagella-related transcripts, TmaR enables cell motility and biofilm formation, thus providing a linkage between LLPS and major survival strategies in bacteria.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010182
Author(s):  
Patrick Günther ◽  
Dennis Quentin ◽  
Shehryar Ahmad ◽  
Kartik Sachar ◽  
Christos Gatsogiannis ◽  
...  

The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise β-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs ‘cocoon’ where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal ‘plug’ domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.


2022 ◽  
Author(s):  
Ben F Luisi ◽  
Md. Saiful Islam ◽  
Steven William Hardwick ◽  
Laura Quell ◽  
Dimitri Y Chirgadze ◽  
...  

The biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled through intricate post-transcription networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthetase in Escherichia coli, but when bound by the protein RapZ, it becomes inactivated through cleavage by the endoribonuclease RNase E. Here we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the protein tetrameric quaternary structure to an imperfect structural repeat in the RNA. The RNA is contacted mostly through a highly conserved domain of RapZ that shares deep evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a pre-cleavage encounter intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised for cleavage. The structures suggest how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors are recognised for processing.


mSphere ◽  
2022 ◽  
Author(s):  
Mário Hüttener ◽  
Jon Hergueta ◽  
Manuel Bernabeu ◽  
Alejandro Prieto ◽  
Sonia Aznar ◽  
...  

Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid.


2022 ◽  
Vol 82 ◽  
Author(s):  
N. Aslam ◽  
S. Hayat ◽  
T. Ali ◽  
M. Waseem ◽  
M. H. Siddique ◽  
...  

Abstract High resistance to antimicrobials is associated with biofilm formation responsible for infectious microbes to withstand severe conditions. Therefore, new alternatives are necessary as biofilm inhibitors to control infections. In this study, the antimicrobial and antibiofilm activities of Fagonia indica extracts were evaluated against MDR clinical isolates. The extract exhibited its antibiofilm effect by altering adherence and disintegration of bacterial cell wall. Fagonia indica has antibacterial effect as minimum inhibitory concentration (MIC) values ranging from 125 to 500 µg mL-1 and minimum bactericidal concentration (MBC) value was 500-3000 µg mL-1 against multidrug resistant (MDR) clinical isolates. The extract exhibited its antibiofilm effect by altering adherence and disintegration of bacterial cell wall. Fagonia indica had antibacterial effect as minimum inhibitory concentration (MIC) values ranging from 125 to 500 µg mL-1 and minimum bactericidal concentration (MBC) value was 500-3000 µg mL-1 against MDR isolates. The maximum inhibitory effects of Fagonia indica chloroform extract on biofilm formation was observed on Staphylococcus aureus (71.84%) followed by Klebsiella pneumoniae (70.83%) after 48 hrs showing that inhibition is also time dependent. Our results about bacterial cell protein leakage indicated that MDR isolates treated with chloroform extract of Fagonia indica showed maximum protein leakage of K. pneumoniae (59.14 µg mL-1) followed by S. aureus (56.7 µg mL-1). Cell attachment assays indicated that chloroform extract resulted in a 43.5-53.5% inhibition of cell adherence to a polystyrene surface. Our results revealed that extracts of Fagonia indica significantly inhibited biofilm formation among MDR clinical isolates, therefore, could be applied as antimicrobial agents and cost effective biofilm inhibitor against these MDR isolates.


Author(s):  
Eric Y. Yu ◽  
Michelle M. S. Lee ◽  
Joe H. C. Chau ◽  
Kristy W. K. Lam ◽  
Hojeong Park ◽  
...  

TPEPy-Ala and TPAPy-Kdo with metabolic moieties can be directly incorporated into the bacterial cell envelopes and light up intracellular bacteria. Additionally, the metabolic probes can effectively eliminate labeled bacteria in situ with minimal host cell cytotoxicity via photodyanmic therapy.


2022 ◽  
Author(s):  
Ferhat Büke ◽  
Jacopo Grilli ◽  
Marco Cosentino Lagomarsino ◽  
Gregory Bokinsky ◽  
Sander J. Tans
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document