Networks of Queues: Product Form Solution

1996 ◽  
Vol 33 (03) ◽  
pp. 858-869 ◽  
Author(s):  
Xiuli Chao ◽  
Michael Pinedo ◽  
Dequan Shaw

Consider a queueing network with batch services at each node. The service time of a batch is exponential and the batch size at each node is arbitrarily distributed. At a service completion the entire batch coalesces into a single unit, and it either leaves the system or goes to another node according to given routing probabilities. When the batch sizes are identical to one, the network reduces to a classical Jackson network. Our main result is that this network possesses a product form solution with a special type of traffic equations which depend on the batch size distribution at each node. The product form solution satisfies a particular type of partial balance equation. The result is further generalized to the non-ergodic case. For this case the bottleneck nodes and the maximal subnetwork that achieves steady state are determined. The existence of a unique solution is shown and stability conditions are established. Our results can be used, for example, in the analysis of production systems with assembly and subassembly processes.


1990 ◽  
Vol 22 (2) ◽  
pp. 433-455 ◽  
Author(s):  
Richard J. Boucherie ◽  
Nico M. Van Dijk

Reversible spatial birth-death processes are studied with simultaneous jumps of multi-components. A relationship is established between (i) a product-form solution, (ii) a partial symmetry condition on the jump rates and (iii) a solution of a deterministic concentration equation. Applications studied are reversible networks of queues with batch services and blocking and clustering processes such as those found in polymerization chemistry. As illustrated by examples, known results are hereby unified and extended. An expectation interpretation of the transition rates is included.


1998 ◽  
Vol 35 (01) ◽  
pp. 151-164
Author(s):  
Xiuli Chao ◽  
Shaohui Zheng

In this paper we consider a network of queues with batch services, customer coalescence and state-dependent signaling. That is, customers are served in batches at each node, and coalesce into a single unit upon service completion. There are signals circulating in the network and, when a signal arrives at a node, a batch of customers is either deleted or triggered to move as a single unit within the network. The transition rates for both customers and signals are quite general and can depend on the state of the whole system. We show that this network possesses a product form solution. The existence of a steady state distribution is also discussed. This result generalizes some recent results of Hendersonet al. (1994), as well as those of Chaoet al. (1996).


1998 ◽  
Vol 35 (1) ◽  
pp. 151-164 ◽  
Author(s):  
Xiuli Chao ◽  
Shaohui Zheng

In this paper we consider a network of queues with batch services, customer coalescence and state-dependent signaling. That is, customers are served in batches at each node, and coalesce into a single unit upon service completion. There are signals circulating in the network and, when a signal arrives at a node, a batch of customers is either deleted or triggered to move as a single unit within the network. The transition rates for both customers and signals are quite general and can depend on the state of the whole system. We show that this network possesses a product form solution. The existence of a steady state distribution is also discussed. This result generalizes some recent results of Henderson et al. (1994), as well as those of Chao et al. (1996).


1996 ◽  
Vol 33 (3) ◽  
pp. 858-869 ◽  
Author(s):  
Xiuli Chao ◽  
Michael Pinedo ◽  
Dequan Shaw

Consider a queueing network with batch services at each node. The service time of a batch is exponential and the batch size at each node is arbitrarily distributed. At a service completion the entire batch coalesces into a single unit, and it either leaves the system or goes to another node according to given routing probabilities. When the batch sizes are identical to one, the network reduces to a classical Jackson network. Our main result is that this network possesses a product form solution with a special type of traffic equations which depend on the batch size distribution at each node. The product form solution satisfies a particular type of partial balance equation. The result is further generalized to the non-ergodic case. For this case the bottleneck nodes and the maximal subnetwork that achieves steady state are determined. The existence of a unique solution is shown and stability conditions are established. Our results can be used, for example, in the analysis of production systems with assembly and subassembly processes.


1990 ◽  
Vol 22 (02) ◽  
pp. 433-455 ◽  
Author(s):  
Richard J. Boucherie ◽  
Nico M. Van Dijk

Reversible spatial birth-death processes are studied with simultaneous jumps of multi-components. A relationship is established between (i) a product-form solution, (ii) a partial symmetry condition on the jump rates and (iii) a solution of a deterministic concentration equation. Applications studied are reversible networks of queues with batch services and blocking and clustering processes such as those found in polymerization chemistry. As illustrated by examples, known results are hereby unified and extended. An expectation interpretation of the transition rates is included.


2017 ◽  
Vol 31 (4) ◽  
pp. 420-435 ◽  
Author(s):  
J.-M. Fourneau ◽  
Y. Ait El Majhoub

We consider open networks of queues with Processor-Sharing discipline and signals. The signals deletes all the customers present in the queues and vanish instantaneously. The customers may be usual customers or inert customers. Inert customers do not receive service but the servers still try to share the service capacity between all the customers (inert or usual). Thus a part of the service capacity is wasted. We prove that such a model has a product-form steady-state distribution when the signal arrival rates are positive.


1994 ◽  
Vol 26 (04) ◽  
pp. 965-987 ◽  
Author(s):  
Raymond W. Yeung ◽  
Bhaskar Sengupta

We have two aims in this paper. First, we generalize the well-known theory of matrix-geometric methods of Neuts to more complicated Markov chains. Second, we use the theory to solve a last-come-first-served queue with a generalized preemptive resume (LCFS-GPR) discipline. The structure of the Markov chain considered in this paper is one in which one of the variables can take values in a countable set, which is arranged in the form of a tree. The other variable takes values from a finite set. Each node of the tree can branch out into d other nodes. The steady-state solution of this Markov chain has a matrix product-form, which can be expressed as a function of d matrices Rl,· ··, Rd. We then use this theory to solve a multiclass LCFS-GPR queue, in which the service times have PH-distributions and arrivals are according to the Markov modulated Poisson process. In this discipline, when a customer's service is preempted in phase j (due to a new arrival), the resumption of service at a later time could take place in a phase which depends on j. We also obtain a closed form solution for the stationary distribution of an LCFS-GPR queue when the arrivals are Poisson. This result generalizes the known result on a LCFS preemptive resume queue, which can be obtained from Kelly's symmetric queue.


Sign in / Sign up

Export Citation Format

Share Document