scholarly journals Model of lifetimes of the outer radiation belt electrons in a realistic magnetic field using realistic chorus wave parameters

2014 ◽  
Vol 119 (2) ◽  
pp. 770-780 ◽  
Author(s):  
Ksenia Orlova ◽  
Yuri Shprits
2019 ◽  
Vol 124 (8) ◽  
pp. 6453-6486 ◽  
Author(s):  
Vivien Loridan ◽  
Jean‐François Ripoll ◽  
Weichao Tu ◽  
Gregory Scott Cunningham

2015 ◽  
Vol 33 (5) ◽  
pp. 583-597 ◽  
Author(s):  
H. Breuillard ◽  
O. Agapitov ◽  
A. Artemyev ◽  
E. A. Kronberg ◽  
S. E. Haaland ◽  
...  

Abstract. Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave–particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40°. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1–100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 ≤ L ≤ 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.


2021 ◽  
Author(s):  
Dedong Wang ◽  
Yuri Shprits ◽  
Alexander Drozdov ◽  
Nikita Aseev ◽  
Irina Zhelavskaya ◽  
...  

<p>Using the three-dimensional Versatile Electron Radiation Belt (VERB-3D) code, we perform simulations to investigate the dynamic evolution of relativistic electrons in the Earth’s outer radiation belt. In our simulations, we use data from the Geostationary Operational Environmental Satellites (GOES) to set up the outer boundary condition, which is the only data input for simulations. The magnetopause shadowing effect is included by using last closed drift shell (LCDS), and it is shown to significantly contribute to the dropouts of relativistic electrons at high $L^*$. We validate our simulation results against measurements from Van Allen Probes. In long-term simulations, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modeling of megaelectron volt (MeV) electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high‐latitude chorus waves can tip the balance between acceleration and loss toward acceleration, or alternatively, the increase in high‐latitude waves can result in a net loss of MeV electrons. Variations in high‐latitude chorus may account for some of the variability of MeV electrons. </p><p>Our simulation results for the NSF GEM Challenge Events show that the position of the plasmapause plays a significant role in the dynamic evolution of relativistic electrons. We also perform simulations for the COSPAR International Space Weather Action Team (ISWAT) Challenge for the year 2017. The COSPAR ISWAT is a global hub for collaborations addressing challenges across the field of space weather. One of the objectives of the G3-04 team “Internal Charging Effects and the Relevant Space Environment” is model performance assessment and improvement. One of the expected outputs is a more systematic assessment of model performance under different conditions. The G3-04 team proposed performing benchmarking challenge runs. We ‘fly’ a virtual satellite through our simulation results and compare the simulated differential electron fluxes at 0.9 MeV and 57.27 degrees local pitch-angle with the fluxes measured by the Van Allen Probes. In general, our simulation results show good agreement with observations. We calculated several different matrices to validate our simulation results against satellite observations.</p>


2002 ◽  
Vol 20 (7) ◽  
pp. 957-965 ◽  
Author(s):  
R. H. A. Iles ◽  
A. N. Fazakerley ◽  
A. D. Johnstone ◽  
N. P. Meredith ◽  
P. Bühler

Abstract. The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)


2015 ◽  
Vol 120 (12) ◽  
pp. 10,425-10,442 ◽  
Author(s):  
O. V. Agapitov ◽  
A. V. Artemyev ◽  
D. Mourenas ◽  
F. S. Mozer ◽  
V. Krasnoselskikh

2020 ◽  
Author(s):  
Yang Zhang ◽  
Binbin Ni ◽  
Xudong Gu ◽  
Yuri Shprits ◽  
Song Fu ◽  
...  

<p><span>Magnetospheric chorus is known to play a significant role in the acceleration and loss of radiation belt electrons. Interactions of chorus waves with radiation belt particles are commonly evaluated using quasi-linear diffusion codes that rely on statistical models, which might not accurately provide the instantaneous global wave distribution from limited in-situ wave measurements. Thus, a novel technique capable of inferring wave amplitudes from POES particle measurements, with an extensive coverage of L-shell and magnetic local time, has been established to obtain event-specific, global dynamic evolutions of chorus waves. This study, using 5 years of POES electron data, further improves the technique, and enables us to subsequently infer the chorus wave amplitudes for all useful data points (removing the electrons which were in the drift loss cone) and to construct the global distribution of lower-band chorus wave intensity. The results obtained from the improved technique reproduce Van Allen Probes in-situ observations of chorus waves reasonably well and reconstruct the major features of the global distribution of chorus waves. We demonstrate that such a data-based, dynamic model can provide near-real-time estimates of chorus wave intensity on a global scale for any time period when POES data are available, which cannot be obtained from in-situ wave measurements by equatorial satellites alone, but is crucial for quantifying the  dynamics of the radiation belt electrons.</span></p>


Sign in / Sign up

Export Citation Format

Share Document