scholarly journals The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

2016 ◽  
Vol 43 (14) ◽  
pp. 7319-7327 ◽  
Author(s):  
J. Yu ◽  
L.Y. Li ◽  
J. B. Cao ◽  
G. D. Reeves ◽  
D. N. Baker ◽  
...  
2002 ◽  
Vol 20 (7) ◽  
pp. 957-965 ◽  
Author(s):  
R. H. A. Iles ◽  
A. N. Fazakerley ◽  
A. D. Johnstone ◽  
N. P. Meredith ◽  
P. Bühler

Abstract. The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)


1999 ◽  
Vol 104 (A9) ◽  
pp. 19923-19930 ◽  
Author(s):  
P. Francia ◽  
S. Lepidi ◽  
U. Villante ◽  
P. Di Giuseppe ◽  
A. J. Lazarus

2012 ◽  
Vol 90 (8) ◽  
pp. 753-758 ◽  
Author(s):  
D.J. McEwen ◽  
G.G. Sivjee

An examination is made of Antarctic dayside auroras to establish how they relate to solar wind strength under the quiet conditions of the recent extended solar minimum when the solar wind pressure was weak and the interplanetary magnetic field Bz is small. It is found that, during the many days of observation, the aurora is detected even with the most stable and quiet conditions. On such occasions the 630 nm OI emission can be as low as 50 R, but is unambiguously and continuously detectable through each noon. This is above an airglow intensity of about 30 R. For these quiet conditions there is no evident relation between the solar wind dynamic pressure or interplanetary magnetic field Bz and dayside auroral intensity. This suggests that there is no effective reconnection under these minimal conditions and the particle source for the dayside aurora could be within the magnetosphere.


2009 ◽  
Vol 27 (6) ◽  
pp. 2457-2474 ◽  
Author(s):  
C. Forsyth ◽  
M. Lester ◽  
R. C. Fear ◽  
E. Lucek ◽  
I. Dandouras ◽  
...  

Abstract. Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.


1971 ◽  
Vol 2 ◽  
pp. 173-188
Author(s):  
C. P. Sonett ◽  
P. Dyal ◽  
D. S. Colburn ◽  
B. F. Smith ◽  
G. Schubert ◽  
...  

AbstractIt is shown that the Moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the Earth though no extant model is free of difficulties.


Sign in / Sign up

Export Citation Format

Share Document