scholarly journals RACORO continental boundary layer cloud investigations: 2. Large-eddy simulations of cumulus clouds and evaluation with in situ and ground-based observations

2015 ◽  
Vol 120 (12) ◽  
pp. 5993-6014 ◽  
Author(s):  
Satoshi Endo ◽  
Ann M. Fridlind ◽  
Wuyin Lin ◽  
Andrew M. Vogelmann ◽  
Tami Toto ◽  
...  
2012 ◽  
Vol 12 (23) ◽  
pp. 11319-11327 ◽  
Author(s):  
G. Chen ◽  
H. Xue ◽  
G. Feingold ◽  
X. Zhou

Abstract. This study investigates the vertical transport of a passive tracer in a shallow cumulus boundary layer using large eddy simulations. The tracer source is at the surface in one case, and in the inversion layer in the other case. Results show that shallow cumulus clouds can significantly enhance vertical transport of the tracer in both cases. In the case with surface-borne pollutants, cloudy regions are responsible for the upward transport, due to the intense updrafts in cumulus clouds. In the case where pollutants are aloft, cloud-free regions are responsible for the downward transport, but the downward transport mainly occurs in thin regions around cloud edges. This is consistent with previous aircraft measurements of downdrafts around cumulus clouds and indicates that the downward transport is also cloud-induced. Cumulus convection is therefore able to both vent pollutants upward from the surface and fumigate pollutants in the inversion layer downward into the lower boundary layer.


2012 ◽  
Vol 12 (5) ◽  
pp. 11391-11413
Author(s):  
G. Chen ◽  
H. Xue ◽  
G. Feingold ◽  
X. Zhou

Abstract. This study investigates the vertical transport of a passive tracer in a shallow cumulus boundary layer using large eddy simulations. The tracer source is at the surface in one case, and in the inversion layer in the other case. Results show that shallow cumulus clouds can significantly enhance vertical transport of the tracer in both cases. In the case with surface-borne pollutants, cloudy regions are responsible for the upward transport, due to the intense updrafts in cumulus clouds. In the case where pollutants are aloft, cloud-free regions are responsible for the downward transport, but the downward transport mainly occurs in thin regions around cloud edges. This is consistent with previous aircraft measurements of downdrafts around cumulus clouds and indicates that the downward transport is also cloud-induced. We also preformed cloud-free sensitivity runs for the two cases. Results show that this dry convection can neither transport the surface-borne pollutants into the inversion layer, nor transport pollutants from the inversion layer downward to the lower boundary layer. Cumulus convection is therefore more effective than dry convection at venting pollutants upward from the surface, and fumigating pollutants in the inversion layer downward into the lower boundary layer.


2020 ◽  
Vol 1618 ◽  
pp. 062038
Author(s):  
Lawrence C. Cheung ◽  
Colleen M. Kaul ◽  
Alan S. Hsieh ◽  
Myra L. Blaylock ◽  
Matthew J. Churchfield

2008 ◽  
Vol 21 (23) ◽  
pp. 6191-6214 ◽  
Author(s):  
Efthymios Serpetzoglou ◽  
Bruce A. Albrecht ◽  
Pavlos Kollias ◽  
Christopher W. Fairall

Abstract The southeast Pacific stratocumulus regime is an important component of the earth’s climate system because of its substantial impact on albedo. Observational studies of this cloud regime have been limited, but during the past 5 yr, a series of cruises with research vessels equipped with in situ and remote sensing systems have provided unprecedented observations of boundary layer cloud and drizzle structures. These cruises started with the East Pacific Investigation of Climate (EPIC) 2001 field experiment, followed by cruises in a similar area in 2003 and 2004 [Pan-American Climate Studies (PACS) Stratus cruises]. The sampling from these three cruises provides a sufficient dataset to study the variability occurring over this region. This study compares observations from the 2004 cruise with those obtained during the previous two cruises. Observations from the ship provide information about boundary layer structure, fractional cloudiness, cloud depth, and drizzle characteristics. This study indicates more strongly decoupled boundary layers during the 2004 cruise than the well-mixed conditions that dominated the cloud and boundary layer structures during the EPIC cruise, and the highly variable conditions—sharp transitions from a solid stratus deck to broken-cloud and clear-sky periods—encountered during PACS Stratus 2003. Diurnal forcing and synoptic conditions are considered to be factors affecting these variations. A statistical evaluation of the macrophysical boundary layer, cloud, and drizzle properties is performed using the 5–6-day periods for which the research vessels remained stationed at the location of 20°S, 85°W during each cruise.


2012 ◽  
Vol 66 ◽  
pp. 121-129 ◽  
Author(s):  
Torsten Auerswald ◽  
Jens Bange ◽  
Tobias Knopp ◽  
Keith Weinman ◽  
Rolf Radespiel

Sign in / Sign up

Export Citation Format

Share Document