boundary layer cloud
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 21 (19) ◽  
pp. 14557-14571
Author(s):  
Michael P. Jensen ◽  
Virendra P. Ghate ◽  
Dié Wang ◽  
Diana K. Apoznanski ◽  
Mary J. Bartholomew ◽  
...  

Abstract. Extensive regions of marine boundary layer cloud impact the radiative balance through their significant shortwave albedo while having little impact on outgoing longwave radiation. Despite this importance, these cloud systems remain poorly represented in large-scale models due to difficulty in representing the processes that drive their life cycle and coverage. In particular, the mesoscale organization and cellular structure of marine boundary clouds have important implications for the subsequent cloud feedbacks. In this study, we use long-term (2013–2018) observations from the Atmospheric Radiation Measurement (ARM) Facility's Eastern North Atlantic (ENA) site on Graciosa Island, Azores, Portugal, to identify cloud cases with open- or closed-cellular organization. More than 500 h of each organization type are identified. The ARM observations are combined with reanalysis and satellite products to quantify the cloud, precipitation, aerosol, thermodynamic, and large-scale synoptic characteristics associated with these cloud types. Our analysis shows that both cloud organization populations occur during similar sea surface temperature conditions, but the open-cell cases are distinguished by stronger cold-air advection and large-scale subsidence compared to the closed-cell cases, consistent with their formation during cold-air outbreaks. We also find that the open-cell cases were associated with deeper boundary layers, stronger low-level winds, and higher rain rates compared to their closed-cell counterparts. Finally, raindrops with diameters larger than 1 mm were routinely recorded at the surface during both populations, with a higher number of large drops during the open-cellular cases. The similarities and differences noted herein provide important insights into the environmental and cloud characteristics during varying marine boundary layer cloud mesoscale organization and will be useful for the evaluation of model simulations for ENA marine clouds.


2021 ◽  
Author(s):  
Iris Thurnherr ◽  
Heini Wernli ◽  
Franziska Aemisegger

<p>Stable water isotopes in marine boundary layer water vapour are strongly influenced by the strength of air-sea moisture fluxes and are thus tracers of air-sea interaction. Air-sea moisture fluxes in the extratropics are modulated by large-scale air advection, for instance the advection of warm and moist air masses in the warm sector of extratropical cyclones. A distinct isotopic composition of water vapour in the latter environment has been observed in near-surface water vapour over the Southern Ocean during the 2016/17 Antarctic Circumnavigation coordinated by the Swiss Polar Institute. Most prominently, the second-order isotope variable d-excess shows negative values in the cyclones’ warm sector. Here, we present three single-process air parcel models, which simulate the evolution of d-excess and specific humidity in an air parcel induced by dew deposition, decreasing ocean evaporation or upstream cloud formation, respectively. The air-parcel models are combined with simulations with the isotope-enabled numerical weather prediction model COSMO<sub>iso</sub> (i) to validate the air parcel models, (ii) to study the extent of non-linear interactions between the different processes, and (iii) to quantify the relevance of the three processes for stable water isotopes in the warm sector of the investigated extratropical cyclone. This analysis reveals that dew deposition and decreasing ocean evaporation lead to the strongest d-excess decrease in near-surface water vapour in the warm sector. Furthermore, COSMO<sub>iso</sub> air parcel trajectories show that the persistent low d-excess observed in the warm sector of extratropical cyclones is not a result of material conservation of low d-excess. Instead the latter feature is sustained by the continuous production of low d-excess values in new air parcels entering the warm sector. We show that with the mechanistic approach of using single-process air parcel models we are able to simulate the evolution of d-excess during the air parcel’s transport. This improves our understanding of the effect of air-sea interaction and boundary layer cloud formation on the stable water isotope variability of marine boundary layer water vapour.</p>


2021 ◽  
Author(s):  
Michael P. Jensen ◽  
Virendra P. Ghate ◽  
Dié Wang ◽  
Diana K. Apoznanski ◽  
Mary J. Bartholomew ◽  
...  

Abstract. Extensive regions of marine boundary layer cloud impact the radiative balance through their significant shortwave albedo while having little impact on outgoing longwave radiation. Despite this importance, these cloud systems remain poorly represented in large-scale models due to difficulty in representing the processes that drive their lifecycle and coverage. In particular, the mesoscale organization, and cellular structure of marine boundary clouds has important implications for the subsequent cloud feedbacks. In this study, we use long-term (2013–2018) observations from the Atmospheric Radiation Measurement (ARM) Facility's Eastern North Atlantic (ENA) site on Graciosa Island, Azores, Portugal to identify cloud cases with open- or closed-cellular organization. More than 500 hours of each organization type are identified. The ARM observations are combined with reanalysis and satellite products to quantify the cloud, precipitation, aerosol, thermodynamic and large-scale synoptic characteristics associated with these cloud types. Our analysis shows that both cloud organization populations occur during similar sea surface temperature conditions, but the open-cell cases are distinguished by stronger cold-air advection and large-scale subsidence compared to the closed-cell cases, consistent with their formation during cold-air outbreaks. We also find that the open-cell cases were associated with deeper boundary layers, stronger low-level winds, and higher-rain rates compared to their closed-cell counterparts. Finally, raindrops with diameters larger than one millimeter were routinely recorded at the surface during both populations, with a higher number of large drops during the open-cellular cases. The similarities and differences noted herein provide important insights into the environmental and cloud characteristics during varying marine boundary layer cloud mesoscale organization and will be useful for the evaluation of model simulations for ENA marine clouds.


2020 ◽  
Vol 33 (23) ◽  
pp. 10133-10148
Author(s):  
Peng Wu ◽  
Xiquan Dong ◽  
Baike Xi

AbstractIn this study, more than 4 years of ground-based observations and retrievals were collected and analyzed to investigate the seasonal and diurnal variations of single-layered MBL (with three subsets: nondrizzling, virga, and rain) cloud and drizzle properties, as well as their vertical and horizontal variations. The annual mean drizzle frequency was ~55%, with ~70% in winter and ~45% in summer. The cloud-top (cloud-base) height for rain clouds was the highest (lowest), resulting in the deepest cloud layer, i.e., 0.8 km, which is 4 (2) times that of nondrizzling (virga) clouds. The retrieved cloud-droplet effective radii rc were the largest (smallest) for rain (nondrizzling) clouds, and the nighttime values were greater than the daytime values. Drizzle number concentration Nd and liquid water content LWCd were three orders and one order lower, respectively, than their cloud counterparts. The rc and LWCc increased from the cloud base to zi ≈ 0.75 by condensational growth, while drizzle median radii rd increased from the cloud top downward the cloud base by collision–coalescence. The adiabaticity values monotonically increased from the cloud top to the cloud base with maxima of ~0.7 (0.3) for nondrizzling (rain) clouds. The drizzling process decreases the adiabaticity by 0.25 to 0.4, and the cloud-top entrainment mixing impacts as deep as upper 40% of the cloud layers. Cloud and drizzle homogeneities decreased with increased horizontal sampling lengths. Cloud homogeneity increases with increasing cloud fraction. These results can serve as baselines for studying MBL cloud-to-rain conversion and growth processes over the Azores.


2020 ◽  
Vol 13 (9) ◽  
pp. 4947-4961
Author(s):  
Mark Richardson ◽  
Matthew D. Lebsock ◽  
James McDuffie ◽  
Graeme L. Stephens

Abstract. The Orbiting Carbon Observatory 2 (OCO-2) carries a hyperspectral A-band sensor that can obtain information about cloud geometric thickness (H). The OCO2CLD-LIDAR-AUX product retrieved H with the aid of collocated CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data to identify suitable clouds and provide a priori cloud top pressure (Ptop). This collocation is no longer possible, since CALIPSO's coordination flying with OCO-2 has ended, so here we introduce a new cloud flagging and a priori assignment using only OCO-2 data, restricted to ocean footprints where solar zenith angle <45∘. Firstly, a multi-layer perceptron network was trained to identify liquid clouds over the ocean with sufficient optical depth (τ>1) for a valid retrieval, and agreement with MODIS–CALIPSO (Moderate Resolution Imaging Spectroradiometer) is 90.0 %. Secondly, we developed a lookup table to simultaneously retrieve cloud τ, effective radius (re) and Ptop from A-band and CO2 band radiances, with the intention that these will act as the a priori state estimate in a future retrieval. Median Ptop difference vs. CALIPSO is 12 hPa with an inter-decile range of [-11,87]hPa, substantially better than the MODIS–CALIPSO range of [-83,81]hPa. The MODIS–OCO-2 τ difference is 0.8[-3.8,6.9], and re is -0.3[-2.8,2.1]µm. The τ difference is due to optically thick and horizontally heterogeneous cloud scenes. As well as an improved passive Ptop retrieval, this a priori information will allow for a purely OCO-2-based Bayesian retrieval of cloud droplet number concentration (Nd). Finally, our cloud flagging procedure may also be useful for future partial-column above-cloud CO2 abundance retrievals.


2020 ◽  
Author(s):  
Mark Richardson ◽  
Matthew D. Lebsock ◽  
James McDuffie ◽  
Graeme L. Stephens

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries a hyperspectral A-band sensor that can obtain information about cloud geometric thickness (H). The OCO2CLD-LIDAR-AUX product retrieved H with the aid of collocated CALIPSO lidar data to identify suitable clouds and provide a priori cloud-top pressure (Ptop). This collocation is no longer possible since CALIPSO's coordination flying with OCO-2 has ended, so here we introduce a new cloud flagging and a priori assignment using only OCO-2 data, restricted to ocean footprints where solar zenith angle  1) for a valid retrieval, and agreement with MODIS-CALIPSO is 90.0 %. Secondly, we developed a lookup table to simultaneously retrieve cloud τ, effective radius (re) and Ptop from A-band and CO2 band radiances. Median Ptop difference versus CALIPSO is 12 hPa with interdecile range [−11,87] hPa, substantially better than the MODIS-CALIPSO [−83,81] hPa. The MODIS-OCO-2 τ difference is 0.8 (−3.8,6.9) and re is −0.3 [−2.8,2.1] μm. The tau difference is due to optically thick and horizontally heterogeneous cloud scenes. As well as an improved passive Ptop retrieval, this a priori information will allow a purely OCO-2 based Bayesian retrieval of cloud droplet number concentration (Nd). Finally, our cloud flagging procedure may also be useful for future partial column above-cloud CO2 abundance retrievals.


2019 ◽  
Vol 37 (1) ◽  
pp. 42-56
Author(s):  
Hui-Wen Lai ◽  
Fuqing Zhang ◽  
Eugene E. Clothiaux ◽  
David R. Stauffer ◽  
Brian J. Gaudet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document