upward transport
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 21 (19) ◽  
pp. 14749-14760
Author(s):  
Quan Liu ◽  
Dantong Liu ◽  
Yangzhou Wu ◽  
Kai Bi ◽  
Wenkang Gao ◽  
...  

Abstract. Aerosols from surface emission can be transported upwards through convective mixing in the planetary boundary layer (PBL), which subsequently interact with clouds, serving as important sources to nucleate droplets or ice particles. However, the evolution of aerosol composition during this vertical transport has yet to be explicitly understood. In this study, simultaneous measurements of detailed aerosol compositions were conducted at two sites, namely urban Beijing (50 m above sea level – a.s.l.) and Haituo mountain (1344 m a.s.l.) during wintertime, representing the anthropogenically polluted surface environment and the top of the PBL, respectively. The pollutants from surface emissions were observed to reach the mountain site on daily basis through daytime PBL convective mixing. From the surface to the top of PBL, we found efficient transport or formation of lower-volatility species (black carbon, sulfate, and low-volatile organic aerosol, OA); however, a notable reduction in semivolatile substances, such as the fractions of nitrate and semivolatile OA reduced by 74 % and 76 %, respectively, during the upward transport. This implies that the mass loss of these semivolatile species was driven by the evaporation process, which repartitioned the condensed semivolatile substances to the gas phase when aerosols were transported and exposed to a cleaner environment. In combination with the oxidation processes, these led to an enhanced oxidation state of OA at the top of the PBL compared to surface environment, with an increase of oxygen to carbon atomic ratio by 0.2. Such a reduction in aerosol volatility during vertical transport may be important in modifying its viscosity, nucleation activity, and atmospheric lifetime.


2021 ◽  
Author(s):  
Mahendra R Kunju ◽  
Mauricio A Almeida

Abstract As the use of adaptive drilling process like Managed Pressure Drilling (MPD) facilitates drilling of otherwise non-drillable wells with faster corrective action, the drilling industry should review some of the misconceptions to produce more efficient well control methods. This paper discusses results from full-scale experiments recently conducted in an extensively instrumented test well at Louisiana State University (LSU) and demonstrate that common expectations regarding the potential for high/damaging internal riser pressures resulting from upward transport or aggregation of riser gas are unfounded, particularly when compressibility of riser and its contents are considered. This research also demonstrates the minimal fluid bleed volumes required to reduce pressure build-up consequences of free gas migration in a fully closed riser.


2021 ◽  
Vol 21 (14) ◽  
pp. 11257-11288
Author(s):  
Simon Rosanka ◽  
Bruno Franco ◽  
Lieven Clarisse ◽  
Pierre-François Coheur ◽  
Andrea Pozzer ◽  
...  

Abstract. The particularly strong dry season in Indonesia in 2015, caused by an exceptionally strong El Niño, led to severe peatland fires resulting in high volatile organic compound (VOC) biomass burning emissions. At the same time, the developing Asian monsoon anticyclone (ASMA) and the general upward transport in the Intertropical Convergence Zone (ITCZ) efficiently transported the resulting primary and secondary pollutants to the upper troposphere and lower stratosphere (UTLS). In this study, we assess the importance of these VOC emissions for the composition of the lower troposphere and the UTLS and investigate the effect of in-cloud oxygenated VOC (OVOC) oxidation during such a strong pollution event. This is achieved by performing multiple chemistry simulations using the global atmospheric model ECHAM/MESSy (EMAC). By comparing modelled columns of the biomass burning marker hydrogen cyanide (HCN) and carbon monoxide (CO) to spaceborne measurements from the Infrared Atmospheric Sounding Interferometer (IASI), we find that EMAC properly captures the exceptional strength of the Indonesian fires. In the lower troposphere, the increase in VOC levels is higher in Indonesia compared to other biomass burning regions. This has a direct impact on the oxidation capacity, resulting in the largest regional reduction in the hydroxyl radical (OH) and nitrogen oxides (NOx). While an increase in ozone (O3) is predicted close to the peatland fires, simulated O3 decreases in eastern Indonesia due to particularly high phenol concentrations. In the ASMA and the ITCZ, the upward transport leads to elevated VOC concentrations in the lower stratosphere, which results in the reduction of OH and NOx and the increase in the hydroperoxyl radical (HO2). In addition, the degradation of VOC emissions from the Indonesian fires becomes a major source of lower stratospheric nitrate radicals (NO3), which increase by up to 20 %. Enhanced phenol levels in the upper troposphere result in a 20 % increase in the contribution of phenoxy radicals to the chemical destruction of O3, which is predicted to be as large as 40 % of the total chemical O3 loss in the UTLS. In the months following the fires, this loss propagates into the lower stratosphere and potentially contributes to the variability of lower stratospheric O3 observed by satellite retrievals. The Indonesian peatland fires regularly occur during El Niño years, and the largest perturbations of radical concentrations in the lower stratosphere are predicted for particularly strong El Niño years. By activating the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), we find that the predicted changes are dampened. Global models that neglect in-cloud OVOC oxidation tend to overestimate the impact of such extreme pollution events on the atmospheric composition.


2021 ◽  
Vol 9 ◽  
Author(s):  
Benedikt Ehrenfels ◽  
Maciej Bartosiewicz ◽  
Athanasio Stephano Mbonde ◽  
Kathrin B.L. Baumann ◽  
Christian Dinkel ◽  
...  

In Lake Tanganyika, blooms of nitrogen-fixing (diazotrophic) cyanobacteria emerge, when the upper water column re-stratifies after a period of upwelling and convective mixing. During this seasonal transition, diazotrophic cyanobacteria exploit the abundant phosphate and fix nitrogen after other phytoplankton taxa have consumed the available nitrate. However, it remains less clear, which mechanisms favour diazotrophic cyanobacteria under more heavily stratified conditions with lower levels of excess phosphate and persistent nitrate-depletion. Here, we collected profiles of physicochemical parameters, nutrients and photo-pigments, as well as the medium- to large-sized phytoplankton community during two lake-wide cruises to elucidate to what extent the abundance of diazotrophic cyanobacteria in Lake Tanganyika may be controlled by the nitrate resupply through the thermocline into the euphotic zone. At stations where nitrate was depleted, but phosphate remained available near the surface, high densities of diazotrophic cyanobacteria were associated with a low nitrate supply to surface waters. Our data provide first support for two conceptual scenarios, where the relative position of the thermocline and the euphotic depth may create a functional niche for diazotrophic cyanobacteria: when the upward transport of nitrate into the euphotic zone is reduced by a subjacent thermocline, diazotrophic cyanobacteria, comprising Dolichospermum and Anabaenopsis, are key players in the medium-to large-sized phytoplankton community. By contrast, a thermocline located within the euphotic zone allows for a rapid vertical transport of nitrate for a thriving nitrate-assimilating phytoplankton community that evidently outcompetes diazotrophic cyanobacteria. This study highlights that, under nitrogen-depleted conditions, diazotrophic cyanobacteria can also grow in response to a reduced nutrient resupply to the productive surface waters.


2021 ◽  
Author(s):  
Simon Rosanka ◽  
Bruno Franco ◽  
Lieven Clarisse ◽  
Pierre-François Coheur ◽  
Andreas Wahner ◽  
...  

<p>In 2015, the particularly strong dry season in Indonesia, caused by an exceptional strong El Niño, led to severe peatland fires. Due to the high carbon content of peatland, these fires are characterised by high volatile organic compound (VOC) biomass burning emissions. The resulting primary and secondary pollutants are efficiently transported to the upper troposphere/lower stratosphere (UTLS) by the developing Asian monsoon anticyclone (ASMA) and the general upward transport in the intertropical convergence zone (ITCZ). In this study, we assess the importance of these VOC emissions for the composition of the lower troposphere and the UTLS by performing multiple chemistry simulations using the global atmospheric model ECHAM/MESSy (EMAC). In a first step, we find that EMAC properly captures the exceptional strength of the Indonesian fires based on the comparison of modelled columns of the biomass burning marker hydrogen cyanide (HCN) to spaceborne measurements from the Infrared Atmospheric Sounding Interferometer (IASI). In the lower troposphere, the increase in VOC levels is higher in Indonesia compared to other biomass burning regions. This directly impacts the oxidation capacity and leads to a high reduction in hydroxyl radicals (OH) and nitrogen oxides (NO<sub>x</sub>). In general, an increase in ozone (O<sub>3</sub>) is predicted close to the peatland fires. However, particular high concentrations of phenols lead to an O<sub>3</sub> depletion in eastern Indonesia. By employing the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), we find that the predicted changes are dampened and that by ignoring these processes, global models tend to overestimate the impact of such extreme pollution events. The upward transport in the ASMA and the ITCZ leads to elevated VOC concentrations in the UTLS region. This also results in a depletion of lower stratospheric O<sub>3</sub>. We find that this is caused by a high destruction of O<sub>3</sub> by phenoxy radicals and by the increased formation of NO<sub>x</sub> reservoir species, which dampen the chemical production of O<sub>3</sub>.</p>


2020 ◽  
Author(s):  
Simon Rosanka ◽  
Bruno Franco ◽  
Lieven Clarisse ◽  
Pierre-François Coheur ◽  
Andreas Wahner ◽  
...  

Abstract. The particularly strong dry season in Indonesia in 2015, caused by an exceptional strong El Niño, led to severe peatland fires resulting in high volatile organic compound (VOC) biomass burning emissions. At the same time, the developing Asian monsoon anticyclone (ASMA) and the general upward transport in the intertropical convergence zone (ITCZ) efficiently transported the resulting primary and secondary pollutants to the upper troposphere/lower stratosphere (UTLS). In this study, we assess the importance of these VOC emissions for the composition of the lower troposphere and the UTLS, and we investigate the effect of in-cloud oxygenated VOC (OVOC) oxidation during such a strong pollution event. This is achieved by performing multiple chemistry simulations using the global atmospheric model ECHAM/MESSy (EMAC). By comparing modelled columns of the biomass burning marker hydrogen cyanide (HCN) to spaceborne measurements from the Infrared Atmospheric Sounding Interferometer (IASI), we find that EMAC properly captures the exceptional strength of the Indonesian fires. In the lower troposphere, the increase in VOC levels is higher in Indonesia compared to other biomass burning regions. This has a direct impact on the oxidation capacity, resulting in the largest regional reduction in hydroxyl radicals (OH) and nitrogen oxides (NOx). Even though an increase in ozone (O3) is predicted close to the peatland fires, particular high concentrations of phenols lead to an O3 depletion in eastern Indonesia. By employing the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), we find that the predicted changes are dampened and that by ignoring these processes, global models tend to overestimate the impact of such extreme pollution events. In the ASMA and the ITCZ, the upward transport leads to elevated VOC concentrations in the UTLS region, which results in a depletion of lower stratospheric O3. We find that this is caused by a high destruction of O3 by phenoxy radicals and by the increased formation of NOx reservoir species, which dampen the chemical production of O3. The Indonesian peatland fires regularly occur during El Niño years and contribute to the depletion of O3. In the time period from 2001 to 2016, we find that the lower stratospheric O3 is reduced by about 0.38 DU and contributes to about 25 % to the lower stratospheric O3 reduction observed by remote sensing. By not considering these processes, global models might not be able to reproduce this variability in lower stratospheric O3.


2020 ◽  
Vol 26 (5) ◽  
pp. 200311-0
Author(s):  
Chiu-Shia Fen ◽  
Yu-Ro Lin ◽  
Chia-Yu Chen

This study explored two diffusion approaches, Fick’s law and the dusty gas model (DGM), to assess their differences on modeling methane transport in porous systems. Laboratory experiments were also conducted for methane transport through a nitrogen gas-dry soil column from different source densities. Gas pressures and methane densities at transient state were measured along the column for two transport configurations (horizontal and vertically upward) and compared with the predictions obtained from the DGM- and Fickian-based models. The retardation factor is the only parameter used in the model calibration. The results showed that the methane density profiles predicted by these models fairly matched the measured data and are quite consistent for vertically upward transport of methane. However, the predictions were over the measured ones for horizontal transport of methane. We suspected it is due to incomplete mixing of gas mixture in the inlet chamber since high pressure variations were observed in the horizontal transport experiments. Further, we found that the methane density profile predicted by the Fickian-based model is lagged behind the DGM result for at most 15% of difference in methane density for horizontal transport of methane from a pure methane source.horizontal transport experiments. Further, we found that the methane density profile predicted by the Fickian-based model lagged behind the DGM result for at most 15% of difference in methane density for horizontal transport of methane from a pure methane source.


Sign in / Sign up

Export Citation Format

Share Document