scholarly journals CME flux rope and shock identifications and locations: Comparison of white light data, Graduated Cylindrical Shell model, and MHD simulations

2016 ◽  
Vol 121 (3) ◽  
pp. 1886-1906 ◽  
Author(s):  
J. M. Schmidt ◽  
Iver H. Cairns ◽  
Hong Xie ◽  
O. C. St. Cyr ◽  
N. Gopalswamy
2020 ◽  
Author(s):  
Yingdong Jia ◽  
Yi Qi ◽  
San Lu ◽  
Christopher T. Russell

2015 ◽  
Author(s):  
Masami Matsubara ◽  
Nobutaka Tsujiuchi ◽  
Takayuki Koizumi ◽  
Akihito Ito ◽  
Kensuke Bito

2016 ◽  
Vol 2016.54 (0) ◽  
pp. _707-1_-_707-2_
Author(s):  
Yusuke HADA ◽  
Mitsugu KANEKO ◽  
Katsuhide FUJITA ◽  
Takashi SAITO

2005 ◽  
Vol 127 (4) ◽  
pp. 373-386 ◽  
Author(s):  
Tomoyo Taniguchi

The rocking motion of the tanks is complex and not fully understood. Using model tanks that possess concentric rigid-doughnut-shaped bottom plates, this paper tries to clarify its fundamental mechanics through the analog of rocking motion of rigid bodies. Introducing an effective mass for the internal liquid for rocking motion enables the development of a dynamical system including the rocking-bulging interaction motion and the effective mass of liquid for the interaction motion. Since the base shear and uplift displacement observed during shaking tests match well with computed values, the proposed procedure can explain the mechanics of the rocking motion of the model tanks used herein.


2021 ◽  
Author(s):  
Volker Bothmer

<div> <p><span>Magnetic clouds are transient solar wind flows in the interplanetary medium with smooth rotations of the magnetic field vector and low plasma beta values. The analysis of magnetic clouds identified in the data of the two Helios spacecraft between 0.3 and 1 AU showed that they can be interpreted to first order by force-free, large-scale, cylindrical magnetic flux tubes. A close correlation of their occurrences was found with disappearing filaments at the Sun. The magnetic clouds that originated from the northern solar hemisphere showed predominantly left-handed magnetic helicities and the ones from the southern hemisphere predominantly right-handed ones. They were often preceded by an interplanetary shock wave and some were found to be directly following a coronal mass ejection towards the Helios spacecraft as detected by the Solwind coronagraph on board the P78-1 satellite. With the SOHO mission unprecedented long-term observations of coronal mass ejections (CMEs) were taken with the LASCO coronagraphs, with a spatial and time resolution that allowed to investigate their internal white-light fine structure. With complementary photospheric and EUV observations from SOHO, CMEs were found to arise from pre-existing small scale loop systems, overlying regions of opposite magnetic polarities. From the characteristic pattern of their source regions in both solar hemispheres, a generic scheme was presented in which their projected white-light topology depends primarily on the orientation and position of the source region’s neutral line on the solar disk. Based on this interpretation the graduated cylindrical shell method was developed, which allowed to model the electron density distribution of CMEs as 3D flux ropes. This concept was validated through stereoscopic observations of CMEs taken by the coronagraphs of the SECCHI remote sensing suite on board the twin STEREO spacecraft. The observations further revealed that the dynamic near-Sun evolution of CMEs often leads to distortions of their flux rope structure. However, the magnetic flux rope concept of CMEs is today one of the fundamental methods in space weather forecasts. With the Parker Solar Probe we currently observe for the first time CMEs in-situ and remotely at their birthplaces in the solar corona and can further unravel their origin and evolution from the corona into the heliosphere. This lecture provides a state-of-the-art overview on the magnetic structure of CMEs and includes latest observations from the Parker Solar Probe mission.</span></p> </div>


Author(s):  
Tomoyo Taniguchi

Employing a few feasible physical quantities of liquid related to the rocking motion of tanks, this paper tries to understand the fundamental dynamics of the rocking motion of tanks. Introducing the effective mass of liquid for rocking motion and for rocking-bulging interaction motions, the equations of motion are derived by analogue of rocking motion between rigid bodies and tanks. Using the exclusive tanks that possess the rigid-doughnuts-shape bottom plate that guarantees the uplift region of the bottom plate and the extent of the effective mass of liquid for rocking motion, the harmonic shaking tests are carried out. The proposed procedures can stepwise trace the base shear and the uplift displacement of the model tanks used herein.


Sign in / Sign up

Export Citation Format

Share Document