natural frequency analysis
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Reza Paknejad ◽  
Faramarz Ashenai Ghasemi ◽  
Keramat Malekzadeh Fard

In this paper, natural frequency of a multilayer truncated conical composite shell conveying quiescent fluid on elastic foundation with different boundary conditions is investigated and analyzed. The governing equations are presented based on the first-order shear deformation theory. Bernoulli’s equation and velocity potential have been used in the shell-fluid interface to obtain the fluid pressure. The fluid used in this study is considered non-compressible and non-viscous. The beam functions and the Galerkin weight functions method are used to describe and solve the coupled system of differential equations. Three types of boundary conditions are considered to investigate the natural frequency of the conical shells. The results show that the presence of the fluid in the conical shell reduces the fundamental natural frequency values. Also, by changing the semi-vertex conical angle from [Formula: see text] to [Formula: see text] for the simply support boundary conditions, the fundamental natural frequency value for the composite conical shell without and with fluid increases, and the presence of the elastic foundation increases the frequencies of the empty and full-fluid composite conical shells.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2232
Author(s):  
Zhibo Sun ◽  
Yan Shi ◽  
Na Wang ◽  
Jian Zhang ◽  
Yixuan Wang ◽  
...  

Pneumatic suspension is the most significant subsystem for an automobile. In this paper, a simplified and novel pneumatic spring structure with only a conical rubber surface is presented and designed to reduce the influence of external factors besides the pneumatic. The nonlinear stiffness of the pneumatic spring is analyzed based on the ideal gas model and material mechanics. Natural frequency analysis and the transmission rate of the pneumatic suspension are obtained as two effect criteria for the dynamic model. The vibration isolation system platform is established in both simulation and prototype tests. With the results from the simulation, the rules of the pneumatic suspension are analyzed, and the optimal function of mass and pressure is achieved. The experiment results show the analysis of the simulation to be effective. This achievement will become an important basis for future research concerning precise active control of the pneumatic suspension in vehicles.


2021 ◽  
Vol 6 (3) ◽  
pp. 170-172
Author(s):  
Ahmed A. Alahmadi ◽  
Khalid A. Alnefaie ◽  
Hamza Diken

The Rotating shafts are mechanical elements used to transmit power or motion. A shaft with a step or steps is widely used instead of a shaft with a fixed (non-variable) diameter when operating at high speeds. The aim of this research is to study the effect of the step amount and its location in the shaft on the natural frequencies of the Jeffcott rotor model. Analytical methods are used to find an approximate formulation to obtain the natural frequencies of the Jeffcott rotor model neglecting the shaft mass. Lagrange equations are used to develop dynamic equations assuming elastic shaft with steps carrying a disk. The finite element method by using ANSYS is used to validate and compare the results obtained in the analytical method. The results obtained analytically and numerically were compatible and in good agreement. In addition, some parameters such as the step amount and the stepped shaft length are changed to check its effects on the natural frequencies. the results showed that the natural frequencies increase with an increase in the amount and length of the stepped part, while they decrease the closer the disc position to the center.


Sign in / Sign up

Export Citation Format

Share Document