scholarly journals Probabilistic point source inversion of strong‐motion data in 3‐D media using pattern recognition: A case study for the 2008 M w 5.4 Chino Hills earthquake

2016 ◽  
Vol 43 (16) ◽  
pp. 8492-8498 ◽  
Author(s):  
Paul Käufl ◽  
Andrew P. Valentine ◽  
Jeannot Trampert
2020 ◽  
Author(s):  
Jan Premus ◽  
Frantisek Gallovic

<p>Dynamic rupture modeling coupled with strong motion data fitting (dynamic source inversion) offers an insight into the rupture physics, constraining and enriching information gained from standard kinematic slip inversions. We utilize the Bayesian Monte Carlo dynamic source inversion method introduced recently by Gallovič et al. (2019), which, in addition to finding a best-fitting model, allows assessing uncertainties of the inferred parameters by sampling the posterior probability density function. The Monte Carlo approach requires running a large number (millions) of dynamic simulations due to the nonlinearity of the inverse problem. It is achieved by using GPU accelerated dynamic rupture simulation code FD3D_TSN (Premus et al., submitted) as a forward solver. We apply the inversion to the 2014 Mw6 South Napa, California, earthquake, employing strong motion data (up to 0.5 Hz) from the 10 closest stations. As an output, we obtain samples of the spatial distributions of dynamic parameters (prestress and parameters of the slip-weakening friction law). Regarding the rupture geometry, we consider two, presently ambiguous, fault planes (Pollitz et al., 2019), showing considerable differences in fitting seismograms in very close vicinity of the fault. We investigate properties of the rupture, especially in the region close to the free surface, and the viability of the model samples to explain the observed data in a broader frequency range (up to 5Hz).</p>


2013 ◽  
Vol 170 (12) ◽  
pp. 2087-2106 ◽  
Author(s):  
Parveen Kumar ◽  
A. Joshi ◽  
O. P. Verma

1988 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Sylvester Theodore Algermissen

2021 ◽  
Vol 109 ◽  
pp. 103253
Author(s):  
Sarit Chanda ◽  
M.C. Raghucharan ◽  
K.S.K. Karthik Reddy ◽  
Vasudeo Chaudhari ◽  
Surendra Nadh Somala

2021 ◽  
Vol 21 (1) ◽  
pp. 1_25-1_45
Author(s):  
Toshihide KASHIMA ◽  
Shin KOYAMA ◽  
Hiroto NAKAGAWA

1994 ◽  
Vol 37 (6) ◽  
Author(s):  
B. P. Cohee ◽  
G. C. Beroza

In this paper we compare two time-domain inversion methods that have been widely applied to the problem of modeling earthquake rupture using strong-motion seismograms. In the multi-window method, each point on the fault is allowed to rupture multiple times. This allows flexibility in the rupture time and hence the rupture velocity. Variations in the slip-velocity function are accommodated by variations in the slip amplitude in each time-window. The single-window method assumes that each point on the fault ruptures only once, when the rupture front passes. Variations in slip amplitude are allowed and variations in rupture velocity are accommodated by allowing the rupture time to vary. Because the multi-window method allows greater flexibility, it has the potential to describe a wider range of faulting behavior; however, with this increased flexibility comes an increase in the degrees of freedom and the solutions are comparatively less stable. We demonstrate this effect using synthetic data for a test model of the Mw 7.3 1992 Landers, California earthquake, and then apply both inversion methods to the actual recordings. The two approaches yield similar fits to the strong-motion data with different seismic moments indicating that the moment is not well constrained by strong-motion data alone. The slip amplitude distribution is similar using either approach, but important differences exist in the rupture propagation models. The single-window method does a better job of recovering the true seismic moment and the average rupture velocity. The multi-window method is preferable when rise time is strongly variable, but tends to overestimate the seismic moment. Both methods work well when the rise time is constant or short compared to the periods modeled. Neither approach can recover the temporal details of rupture propagation unless the distribution of slip amplitude is constrained by independent data.


Sign in / Sign up

Export Citation Format

Share Document