source characterization
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 133)

H-INDEX

43
(FIVE YEARS 6)

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 14-31
Author(s):  
Brian Carlton ◽  
Andy Barwise ◽  
Amir M. Kaynia

Offshore wind has become a major contributor to reducing global carbon emissions. This paper presents a probabilistic seismic hazard analysis for the Sofia Offshore Wind Farm, which is located about 200 km north-east of England in the southern North Sea and will be one of the largest offshore wind farms in the world once completed. The seismic source characterization is composed of two areal seismic source models and four seismic source models derived using smoothed gridded seismicity with earthquake catalogue data processed by different techniques. The ground motion characterization contains eight ground motion models selected based on comparisons with regional data. The main findings are (1) the variation in seismic hazard across the site is negligible; (2) the main source controlling the hazard is the source that includes the 1931 Dogger Bank earthquake; (3) earthquake scenarios controlling the hazard are Mw = 5.0–6.3 and R = 110–210 km; and (4) the peak ground accelerations on rock are lower than for previous regional studies. These results could help guide future seismic hazard assessments in the North Sea.


Author(s):  
C. Shen ◽  
D. Brito ◽  
J. Diaz ◽  
F. Sanjuan ◽  
C. Bordes ◽  
...  

AbstractThe present study aimed to characterize the properties of a laser-generated seismic source for laboratory-scale geophysical experiments. This consisted of generating seismic waves in aluminum blocks and a carbonate core via pulsed-laser impacts and measuring the wave-field displacement via laser vibrometry. The experimental data were quantitatively compared to both theoretical predictions and 2D/3D numerical simulations using a finite element method. Two well-known and distinct physical mechanisms of seismic wave generation via pulsed-laser were identified and characterized accordingly: a thermoelastic regime for which the incident laser power was relatively weak, and an ablation regime at higher incident powers. The radiation patterns of the pulsed-laser seismic source in both regimes were experimentally measured and compared with that of a typical ultrasonic transducer. This study showed that this point-like, contact-free, reproducible, simple-to-use laser-generated seismic source was an attractive alternative to piezoelectric sources for laboratory seismic experiments, especially those concerning small scale, sub-meter measurements.


Author(s):  
Jessica R. Murray ◽  
Eric M. Thompson ◽  
Annemarie S. Baltay ◽  
Sarah E. Minson

ABSTRACT We identify aspects of finite-source parameterization that strongly affect the accuracy of estimated ground motion for earthquake early warning (EEW). EEW systems aim to alert users to impending shaking before it reaches them. The U.S. West Coast EEW system, ShakeAlert, currently uses two algorithms based on seismic data to characterize the earthquake’s location, magnitude, and origin time, treating it as a point or line source. From this information, ShakeAlert calculates shaking intensity and alerts locations where shaking estimates exceed a threshold. Several geodetic EEW algorithms under development would provide 3D finite-fault information. We investigate conditions under which this information produces sufficiently better intensity estimates to potentially improve alerting. Using scenario crustal and subduction interface sources, we (1) identify the most influential source geometry parameters for an EEW algorithm’s shaking forecast, and (2) assess the intensity alert thresholds and magnitude ranges for which more detailed source characterization affects alert accuracy. We find that alert regions determined using 3D-source representations of correct magnitude and faulting mechanism are generally more accurate than those obtained using line sources. If a line-source representation is used and magnitude is calculated from the estimated length, then incorrect length estimates significantly degrade alert region accuracy. In detail, the value of 3D-source characterization depends on the user’s chosen alert threshold, tectonic regime, and faulting style. For the suite of source models we tested, the error in shaking intensity introduced by incorrect geometry could reach levels comparable to the intrinsic uncertainty in ground-motion calculations (e.g., 0.5–1.3 modified Mercalli intensity [MMI] units for MMI 4.5) but, especially for crustal sources, was often less. For subduction interface sources, 3D representations substantially improved alert area accuracy compared to line sources, and incorrect geometry parameters were more likely to cause error in calculated shaking intensity that exceeded uncertainties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernabe Gomez ◽  
Usama Kadri

AbstractUnderwater seismic events generate acoustic radiation (such as acoustic-gravity waves), that carries information about the source and can travel long distances before dissipating. Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require a rapid characterisation of the fault properties: geometry and dynamics. In this work, we analysed hydrophone recordings of 201 earthquakes, located in the Pacific and the Indian Ocean, by employing acoustic signal processing and classification methods. The analysis allows identifying the type of earthquake (i.e. slip type, magnitude) and provides near real-time estimation of the effective properties of the fault dynamics and geometry. The results were compared against values reported by the Harvard Global Centroid Moment Tensor catalog (gCMT), revealing statistical significance between the extracted acoustic properties used to feed machine learning algorithms and the predicted slip and magnitude values.


Chemosphere ◽  
2021 ◽  
pp. 132429
Author(s):  
Florentina Villanueva ◽  
Sonia Lara ◽  
Alberto Notario ◽  
Mariano Amo-Salas ◽  
Beatriz Cabañas

2021 ◽  
pp. 131095
Author(s):  
Nithiwach Nawaukkaratharnant ◽  
Pim Sudhikam ◽  
Sirithan Jiemsirilers ◽  
Thanakorn Wasanapiarnpong

Sign in / Sign up

Export Citation Format

Share Document