duration prediction
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 31-40
Author(s):  
Rishabh Doshi ◽  
Rishabh Dev Saini ◽  
Shivam Kansal

2021 ◽  
Author(s):  
Xiaomin Chen ◽  
Li Huang ◽  
Wenzhi Liu ◽  
Po-Chou Shih ◽  
Jiaxin Bao

Author(s):  
Prashansa Agrawal ◽  
Antony Franklin ◽  
Digvijay Pawar ◽  
Srijith PK

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weiwei Zhu ◽  
Jinglin Wu ◽  
Ting Fu ◽  
Junhua Wang ◽  
Jie Zhang ◽  
...  

Purpose Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps. Design/methodology/approach This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing. Findings Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction. Research limitations/implications The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations. Practical implications The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications. Originality/value This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.


2021 ◽  
Vol 109 ◽  
pp. 103253
Author(s):  
Sarit Chanda ◽  
M.C. Raghucharan ◽  
K.S.K. Karthik Reddy ◽  
Vasudeo Chaudhari ◽  
Surendra Nadh Somala

Author(s):  
M Poongodi ◽  
Mohit Malviya ◽  
Chahat Kumar ◽  
Mounir Hamdi ◽  
V Vijayakumar ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 4552
Author(s):  
P. Velumani ◽  
N. V. N. Nampoothiri ◽  
Urbański Mariusz

Predicting the duration of construction projects with acceptable accuracy is a problem for contractors and researchers. Numerous researchers and tools are involved in sorting out this problem. The aim of the study is to predict the construction duration using four analytical tools as an approach. The success of construction projects in regard to time depends on various factors such as selection of contractors, consultants, cost of the projects, quality of the projects, the quantity of the projects, environmental factors, etc. Presently available commercial tools in the market are not designed as universally common and concerned. Every tool performs well in a particular situation. The prediction of India’s highway road projects duration is the biggest construction issue in the country due to various reasons. To overcome this problem, the methodology of the paper adopts various strategies to find suitable tools to predict the highway road projects’ duration, in which it classifies and analyzes the collected data. As a part of this work, the details of 363 government infrastructure projects (traditional procurement) were collected from 2000 to 2018. The present study also adopts various tools for duration prediction such as artificial neural networks (ANNs), smoothing techniques, time series analysis, and Bromilow’s time–cost (BTC) model. The results of the study recommend smoothing techniques with a constant value of 0.3, which gave the remarkable very small error of 1.2%, and its outcomes become even better when compared to other techniques.


Sign in / Sign up

Export Citation Format

Share Document