spectral accelerations
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sreeram Reddy Kotha ◽  
Graeme Weatherill ◽  
Dino Bindi ◽  
Fabrice Cotton

Abstract Ground-motion models (GMMs) are often used to predict the random distribution of spectral accelerations (SAs) at a site due to an earthquake at a distance. In probabilistic seismic hazard and risk assessment, large earthquakes occurring close to a site are considered as critical scenarios. GMMs are expected to perform well for such rare scenarios i.e., to predict realistic SAs with low prediction uncertainty. However, the datasets used to regress GMMs are usually deficient of data from rare/critical scenarios. The Kotha et al. (2020) GMM developed from the Engineering Strong Motion (ESM) dataset was found to predict decreasing short-period SAs with increasing \({M}_{W}\ge {M}_{h}=6.2\), and with large within-model uncertainty at near-source distances \({R}_{JB}\le 30km\). In this study, we analysed and updated the parametrisation of the GMM based on non-parametric and parametric analyses of ESM and the NEar Source Strong motion (NESS) datasets. By reducing \({M}_{h}\) to 5.7, we could rectify the \({M}_{W}\) scaling issue, while also reducing the within-model uncertainty on predictions at \({M}_{W}\ge 6.2\). We then evaluated the updated GMM against NESS data, and found that the SAs from a few large, thrust-faulting events in California, New Zealand, Japan, and Mexico are significantly higher than GMM median predictions. However, near-source recordings of these events were mostly made on soft-soil geology and contain anisotropic pulse-like effects. A more thorough non-ergodic treatment of NESS was not possible because most sites sampled unique events in very diverse tectonic environments. Therefore, for now, we provide an updated set of GMM coefficients, within-model uncertainty, and heteroskedastic variance models.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2021 ◽  
Author(s):  
WALTER SALAZAR

Abstract We propose a cross-validated seismic hazard (CVSH) method contrasting time-independent and dependent models via the Poisson and Weibull probability cumulative distributions. Based on the upper-limit spectral accelerations retrieved from the time-dependent models, we infer that in the memoryless Poisson approach, the selected lifetime of buildings is location-dependent rather than a fixed classical value of 50 years for all sites. All models compute the seismic hazard for magnitudes M 5-7.83 by the influence of the interface subduction zone in El Salvador at three locations, the Capital City San Salvador, the Port of Acajutla on the coastline, and Arcatao Town in the North of the country returning average spectral accelerations with less than 10% differences in all cases.


2020 ◽  
Vol 57 (7) ◽  
pp. 974-991 ◽  
Author(s):  
Xuan Mei ◽  
Scott M. Olson ◽  
Youssef M.A. Hashash

Pore-water pressure (PWP) generation can lead to soil softening and liquefaction of sandy soils during earthquakes, with potential influence on site response and seismic design. The authors evaluated the generalized quadratic/hyperbolic (GQ/H) constitutive model, which captures small-strain stiffness, large-strain shear strength, and is coupled with a widely used cyclic strain–based PWP generation model (termed GQ/H+u). A suite of cyclic direct simple shear tests with a range of relative densities (∼30%–80%) and effective vertical stresses (∼25–200 kPa) and dynamic centrifuge tests with liquefiable sands were used to evaluate the ability of the GQ/H+u model to simulate cyclic soil behavior. Results indicate that GQ/H+u provides reasonable estimates of PWP increase during cyclic shear, with differences between measured and computed excess PWP ratios (ru) for both element and centrifuge tests generally smaller than 0.1. Computed spectral accelerations are comparable to centrifuge test measurements, with almost no bias at medium to long periods (T > 0.4 s) when the computed maximum shear strain (γmax) was smaller than the limit shear strain (γlimit). When computed ru > 0.8 and computed γmax > γlimit, spectral accelerations may be underestimated at both short and long periods as dilative behavior is not captured by GQ/H+u.


2020 ◽  
Vol 36 (2) ◽  
pp. 788-805 ◽  
Author(s):  
Gabriel Candia ◽  
Alan Poulos ◽  
Juan Carlos de la Llera ◽  
Jorge G.F. Crempien ◽  
Jorge Macedo

The correlation between spectral accelerations is key in the construction of conditional mean spectra, the computation of vector-valued seismic hazard, and the assessment of seismic risk of spatially distributed systems, among other applications. Spectral correlations are highly dependent on the earthquake database used, and thus, region-specific correlation models have been developed mainly for earthquakes in western United States, Europe, Middle East, and Japan. Correlation models based on global data sets for crustal and subduction zones have also become available, but there is no consensus about their applicability on a specific region. This study proposes a new correlation model for 5% damped spectral accelerations and peak ground velocity in the Chilean subduction zone. The correlations obtained were generally higher than those observed from shallow crustal earthquakes and subduction zones such as Japan and Taiwan. The study provides two illustrative applications of the correlation model: (1) computation of conditional spectra for a firm soil site located in Santiago, Chile and (2) computation of bivariate hazard for spectral accelerations at two structural periods.


Sign in / Sign up

Export Citation Format

Share Document