scholarly journals Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study

2017 ◽  
Vol 32 (1) ◽  
pp. 2-17 ◽  
Author(s):  
L. Menviel ◽  
J. Yu ◽  
F. Joos ◽  
A. Mouchet ◽  
K. J. Meissner ◽  
...  
2014 ◽  
Vol 10 (6) ◽  
pp. 1939-1955 ◽  
Author(s):  
T. Caley ◽  
D. M. Roche ◽  
C. Waelbroeck ◽  
E. Michel

Abstract. We use the fully coupled atmosphere–ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (δ18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean δ18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice sheet. We observe a general pattern toward more enriched values for continental calcite δ18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data–model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data–model comparison for calcite δ18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a strong mean annual cooling in the area south of Iceland and Greenland between the LGM and present (> 6 °C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data–model comparison also reveals that large positive calcite δ18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive δ18Osw anomaly for the north Indian Ocean that contrasts with a large negative δ18Osw anomaly in the China Sea between the LGM and the present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in δ18Osw between the LGM and the present are not spatially homogeneous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite δ18O data. Nonetheless, our data–model comparison supports a heterogeneous cooling of a few degrees (2–4 °C) in the LGM Ocean.


2014 ◽  
Vol 10 (1) ◽  
pp. 105-148 ◽  
Author(s):  
T. Caley ◽  
D. M. Roche ◽  
C. Waelbroeck ◽  
E. Michel

Abstract. We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 yr). By using a model that is able to explicitly simulate the sensor (δ18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean δ18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice-sheet. We observe a general pattern toward more enriched values for continental calcite δ18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data-model comparison for calcite δ18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a trong mean annual cooling between the LGM and present (> 6°C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals that large positive calcite δ18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive δ18Osw anomaly for the north Indian Ocean that contrasts with a large negative δ18Osw anomaly in the China Sea between the LGM and present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in δ18Osw between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite δ18O data. Nonetheless, our data-model comparison support a heterogeneous cooling of few degrees (2–4°C) in the LGM Ocean.


2010 ◽  
Vol 292 (3-4) ◽  
pp. 290-300 ◽  
Author(s):  
Katharine R. Hendry ◽  
R. Bastian Georg ◽  
Rosalind E.M. Rickaby ◽  
Laura F. Robinson ◽  
Alex N. Halliday

2020 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Ruza Ivanovic ◽  
Ayako Abe-Ouchi ◽  
Hidetaka Kobayashi ◽  
Laurie Menviel ◽  
...  

<p>More and more climate models now include the carbon cycle, but multi-models studies of climate-carbon simulations within the Climate Model Intercomparison Project (CMIP) are limited to present and future time periods. In addition, the carbon cycle is not considered in the simulations of past periods analysed within the Paleoclimate Modelling Intercomparison Project (PMIP). Yet, climate-carbon interactions are crucial to anticipate future atmospheric CO<sub>2</sub> concentrations and their impact on climate. Such interactions can change depending on the background climate, it is thus necessary to compare model results among themselves and to data for past periods with different climates such as the Last Glacial Maximum (LGM).</p><p>The Last Glacial Maximum, around 21,000 years ago, was about 4°C colder than the pre-industrial, and associated with large ice sheets on the American and Eurasian continents. It is one of the best documented periods thanks to numerous paleoclimate archives such as marine sediment cores and ice cores. Despite this period having been studied for years, no consensus on the causes of the lower atmospheric CO<sub>2</sub> concentration at the time (around 180 ppm) has been reached and models still struggle to simulate these low CO<sub>2</sub> values. The ocean, which contains around 40 times more carbon than the atmosphere, likely plays a key role, but models tend to simulate ocean circulation changes in disagreement with proxy data, such as carbon isotopes.</p><p>This new project aims at comparing, for the first time, the carbon cycle representation at the Last Glacial Maximum from general circulation models and intermediate complexity models. We will explain the protocol and present first results in terms of carbon storage in the main reservoirs (atmosphere, land and ocean) and their link to key climate variables such as temperature, sea ice and ocean circulation. The use of coupled climate-carbon models will not only allow to compare changes in the carbon cycle in models and analyse their causes, but it will also enable us to better compare to indirect data related to the carbon cycle such as carbon isotopes.</p>


2020 ◽  
Author(s):  
Frerk Pöppelmeier ◽  
Patrick Blaser ◽  
Marcus Gutjahr ◽  
Samuel Jaccard ◽  
Martin Frank ◽  
...  

<p>Increased carbon sequestration in the ocean subsurface is commonly assumed to have been one of the main causes responsible for lower glacial atmospheric CO<sub>2</sub> concentrations. This carbon must have been stored away from the atmosphere for thousands of years, yet the water mass structure accommodating such increased carbon storage continues to be debated. Here we present new sediment derived bottom water neodymium isotope data that allow fingerprinting of water masses and their mixtures and provide a more complete picture of the Atlantic overturning circulation geometry during the Last Glacial Maximums. These results suggest that the vertical and meridional structure of the Atlantic deep water mass distribution only experienced minor changes since the last ice age. In particular, we find no compelling evidence supporting glacial southern sourced water substantially expanding to shallower depths and farther into the northern hemisphere than today, which has been inferred from stable carbon isotope reconstructions. We argue that depleted δ<sup>13</sup>C values observed in the deep Northwest Atlantic do not necessarily indicate the presence of southern sourced water. Instead, these values may represent a northern sourced water mass with lower than modern preformed δ<sup>13</sup>C values that were further modified downstream by increased sequestration of remineralized carbon, facilitated by a more sluggish glacial deep circulation. If proven to be correct, the glacial water mass structure inferred from Nd isotopes has profound implications on our understanding of the deep ocean carbon storage during the Last Glacial Maximum.</p>


2020 ◽  
Author(s):  
Laurie Menviel ◽  
Paul Spence ◽  
Luke Skinner ◽  
Kazuyo Tachikawa ◽  
Tobias Friedrich ◽  
...  

<p>While paleoproxy records and modelling studies consistently suggest that North Atlantic  Deep Water (NADW) was shallower at the Last Glacial Maximum (LGM) than during pre-industrial times, its strength is still subject to debate partly due to different signals across the North Atlantic. Here, using a series of LGM experiments performed with a carbon isotopes enabled Earth system model, we show that proxy records are consistent with a shallower and weaker NADW. A significant equatorward advance of sea-ice over the Labrador Sea and the Nordic Seas shifts the NADW convection sites to the south of the Norwegian Sea. While the deep western boundary current in the Northwest Atlantic weakens with NADW, a change in density gradients strengthens the deep southward flow in the Northeast Atlantic. A shoaling and weakening of NADW further allow penetration of Antarctic Bottom Water in the North Atlantic despite its transport being reduced. This resultant globally weaker oceanic circulation leads to an increase in deep ocean carbon of ~500 GtC, thus significantly contributing to the lower LGM atmospheric CO<sub>2</sub> concentration.</p><p> </p>


2002 ◽  
Vol 17 (2) ◽  
pp. 5-1-5-15 ◽  
Author(s):  
A. Schmittner ◽  
K. J. Meissner ◽  
M. Eby ◽  
A. J. Weaver

Sign in / Sign up

Export Citation Format

Share Document