scholarly journals Aurora A kinase is required for activation of the Fanconi anemia/ BRCA pathway upon DNA damage

FEBS Open Bio ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 782-790 ◽  
Author(s):  
Min Jeong Chun ◽  
Soo Kyung Hwang ◽  
Hyoun Geun Kim ◽  
Sung‐Ho Goh ◽  
Sunshin Kim ◽  
...  
2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


2014 ◽  
Vol 42 (15) ◽  
pp. 9807-9820 ◽  
Author(s):  
Meghan Larin ◽  
David Gallo ◽  
Laura Tamblyn ◽  
Jay Yang ◽  
Hudson Liao ◽  
...  

AbstractIndividuals with Fanconi anemia (FA) are susceptible to bone marrow failure, congenital abnormalities, cancer predisposition and exhibit defective DNA crosslink repair. The relationship of this repair defect to disease traits remains unclear, given that crosslink sensitivity is recapitulated in FA mouse models without most of the other disease-related features. Mice deficient in Mus81 are also defective in crosslink repair, yet MUS81 mutations have not been linked to FA. Using mice deficient in both Mus81 and the FA pathway protein FancC, we show both proteins cooperate in parallel pathways, as concomitant loss of FancC and Mus81 triggered cell-type-specific proliferation arrest, apoptosis and DNA damage accumulation in utero. Mice deficient in both FancC and Mus81 that survived to birth exhibited growth defects and an increased incidence of congenital abnormalities. This cooperativity of FancC and Mus81 in developmental outcome was also mirrored in response to crosslink damage and chromosomal integrity. Thus, our findings reveal that both pathways safeguard against DNA damage from exceeding a critical threshold that triggers proliferation arrest and apoptosis, leading to compromised in utero development.


2016 ◽  
Vol 344 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Yi-Chao Hsu ◽  
Chien-Yu Kao ◽  
Yu-Fen Chung ◽  
Don-Ching Lee ◽  
Jen-Wei Liu ◽  
...  

Oncogene ◽  
2005 ◽  
Vol 25 (3) ◽  
pp. 338-348 ◽  
Author(s):  
A Krystyniak ◽  
C Garcia-Echeverria ◽  
C Prigent ◽  
S Ferrari
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document