Determination of the Fracture Toughness of Thermally Grown Oxide (TGO) in a Thermal Barrier System

Author(s):  
Jrgen Malzbender ◽  
Isabel Escobar ◽  
Roland Herzog ◽  
Rolf W. Steinbrech ◽  
Heinrich ttel
Author(s):  
Peter Warren ◽  
Sandip Haldar ◽  
Seetha Raghavan ◽  
Ranajay Ghosh

Abstract Growth of the Thermally Grown Oxide (TGO) between the bond coat and thermal barrier coating (TBC) during service is one of the most common causes of failure within thermal barrier coating (TBC) systems. Initially this oxide will provide protection from oxidation for the substrate, but stress build up will contribute to delamination of the topcoat. Research has been carried out over the stresses caused by this TGO growth, and how to best mitigate these induced stresses. The interface topography plays a critical role for air plasma sprayed (APS) TBCs in development of stress profiles across the TGO/TBC interface [1, 2]. The APS TBCs fail by cracking in the TBC close to the TGO-TBC interface. Most models treat TGO as a sinusoidal wavelength interface. However, most TGO surfaces have been experimentally observed to have fractal like patterns at the interfacial region of the bondcoat and topcoat. Fractals provide us a better understanding of interactions at rough interfaces between two materials adhered to one another. In this work, we model the topography of the TGO using a Koch fractal. We find the geometry selected to model the TGO layer has a direct effect on the stress generation and creep strain during simulation.


1999 ◽  
Vol 5 (S2) ◽  
pp. 854-855
Author(s):  
M.R. Brickey ◽  
J.L. Lee

Thermal barrier coatings (TBCs) insulate gas turbine hot section components from the hot (∽1200 - 1450°C) combustion gas exhaust stream. An airline company can save millions of dollars per year by using TBCs to protect vital engine components and to improve fuel efficiency. TBCs typically consist of an 8 wt.% yttria-partially-stabilized zirconia (YPSZ) ceramic topcoat deposited on a platinum-nickel-aluminide (Pt-Ni-Al) bondcoat covering a nickel-based superalloy substrate. Thermal exposure during YPSZ electron beam-physical vapor deposition (EB-PVD) and engine operation promotes the formation of a thermally grown oxide (TGO) between the Pt-Ni-Al and the YPSZ layers. Stresses can develop at the Pt-Ni-Al/TGO and TGO/YPSZ interfaces due to TGO growth and thermal expansion coefficient mismatch. These stresses eventually cause spallation of the YPSZ, leaving the metallic substrate vulnerable to high temperature degradation since exhaust temperatures are often higher than the melting temperature of most nickel-based superalloys (∽1200 - 1450°C).


Sign in / Sign up

Export Citation Format

Share Document