coating delamination
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marius Rutkevičius ◽  
Jimmy Dong ◽  
Darren Tremelling ◽  
Julia Viertel ◽  
Samuel Beckford

Purpose Low friction polymer coatings able to withstand high loadings and many years of continuous operation are difficult to formulate at low cost, but could find many applications in industry. This study aims to analyze and compare friction and wear performance of novel polydopamine/polytetrafluoroethylene (PDA/PTFE) and traditional tin Babbitt coatings applied to an industrial journal bearing. Design/methodology/approach This paper tested PTFE based coating, co-deposited with PDA, a biopolymer allowing sea mussels to adhere to ocean rocks. This coating was deposited on flat steel substrates and on a curved cast iron hydrodynamic journal bearing surface. The flat substrates were analyzed with a tribometer and an optical microscope, while the coated bearing liners were tested in an industrial laboratory setting at different speeds and different radial loads. Findings PDA/PTFE coating showed 2-3 times lower friction compared to traditional tin Babbitt for flat substrates, but higher friction in the bearing liners. PDA/PTFE also showed considerable wear through coating delamination and abrasion in the bearing liners. Research limitations/implications Five future modifications to mitigate coating flaws are provided, which include modifications to coating thickness and its surface finish. Originality/value While the novel coating showed excellent results on flat substrates, coating performance in a large scale bearing was found to be poor. This study shows that coating preparation needs to be improved to avoid frictional losses and unwanted damage to bearings. We provide several routes that could improve coating performance in industrial applications.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7429
Author(s):  
Bishwash Shrestha ◽  
Mohammadamin Ezazi ◽  
Gibum Kwon

Separating oil-water mixtures is critical in a variety of practical applications, including the treatment of industrial wastewater, oil spill cleanups, as well as the purification of petroleum products. Among various methodologies that have been utilized, membranes are the most attractive technology for separating oil-water emulsions. In recent years, selective wettability membranes have attracted particular attention for oil-water separations. The membrane surfaces with hydrophilic and in-air oleophobic wettability have demonstrated enhanced effectiveness for oil-water separations in comparison with underwater oleophobic membranes. However, developing a hydrophilic and in-air oleophobic surface for a membrane is not a trivial task. The coating delamination process is a critical challenge when applying these membranes for separations. Inspired by the above, in this study we utilize poly(ethylene glycol)diacrylate (PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) to fabricate a hydrophilic and in-air oleophobic coating on a filter. We utilize methacryloxypropyl trimethoxysilane (MEMO) as an adhesion promoter to enhance the adhesion of the coating to the filter. The filter demonstrates robust oil repellency preventing oil adhesion and oil fouling. Utilizing the filter, gravity-driven and continuous separations of surfactant-stabilized oil-water emulsions are demonstrated. Finally, we demonstrate that the filter can be reused multiple times upon rinsing for further oil-water separations.


2021 ◽  
Vol 68 (3-4) ◽  
pp. 71-78
Author(s):  
Sebastian Sklenak ◽  
Jens Brimmers ◽  
Christian Brecher ◽  
Bastian Lenz ◽  
Andreas Mehner

For special applications, the lubrication of gearboxes with liquid lubricants is not feasible. Liquid lubricants lose their positive lubricating properties when exposed to high contact stress and temperature fluctuations, for example. In the food industry and medical technology, liquid lubricants are often not permitted due to hygiene regulations. Solid lubricants offer an approach to implement dry tooth contacts. In this report, three different solid lubricant coating systems are investigated under different operating conditions. The focus of the experi mental investigation is the application behavior in terms of friction force and wear behavior. In a direct comparison, the MoS2:Ti-TiN coating system achieves the highest load level and exhibits a station ary frictional force behavior compared to the a-C:H:Ti-TiN coating system. In the wear investigation, continuous coating wear was found in addition to coating delamination. The layer wear correlates with an increasing friction force in interval operation.


2021 ◽  
pp. 159101992110151
Author(s):  
Rasmus Holmboe Dahl ◽  
René Wugt Larsen ◽  
Esben Thormann ◽  
Goetz Benndorf

Cerebral polymer coating embolism from intravascular devices represents a potentially serious complication to endovascular therapy (EVT). We report two cases of neuroendovascular treatment where filamentous polymer fragments were noted possibly due to damage of the surface coating during manipulation and backloading of microguidewires. As the exact origin of the debris was initially not known, microguidewires and fragments were examined with light microscopy, stereomicroscopy, scanning electron microscopy and attenuated-total-reflection Fourier transform infrared spectroscopy. Fragments consisted of polytetrafluoroethylene and silicone oil stemming from the proximal shaft of a standard microguidewire. To our knowledge, this is the first report of polytetrafluoroethylene coating fragments created during EVT. Future studies should assess the mechanism of polymer coating delamination and its potential consequences during EVT including inadvertent fragment migration into the cerebral circulation.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2799
Author(s):  
Mohammad Shariful Islam Chowdhury ◽  
Bipasha Bose ◽  
German Fox-Rabinovich ◽  
Stephen Clarence Veldhuis

The machining of Ti6Al4V alloy, especially at low cutting speeds, is associated with strong Built-Up Edge (BUE) formation. The PVD coatings applied on cutting tools to machine such materials must have the necessary combination of properties to address such an underlying wear mechanism. The present work investigates and shows that TiB2 PVD coating can be designed to have certain mechanical properties and tribological characteristics that improve machining in cases where BUE formation is observed. Three TiB2 coatings were studied: one low hardness coating and two high hardness coatings with varied coating thicknesses. Wear performances for the various TiB2 coated carbide tools were evaluated while rough turning Ti6Al4V. Tool wear characteristics were evaluated using tool life studies and the 3D wear volume measurements of the worn surface. Chip morphology analyses were done to assess the in-situ tribological performance of the coatings. The micro-mechanical properties of the coatings were also studied in detail to co-relate with the coatings’ performances. The results obtained show that during the rough turning of Ti6Al4V alloy with intensive BUE formation, the harder TiB2 coatings performed worse, with coating delamination on the rake surface under operation, whereas the softer version of the coating exhibited significantly better tool life without significant coating failure.


Author(s):  
Torben Fiedler ◽  
Joachim Rösler ◽  
Martin Bäker ◽  
Felix Hötte ◽  
Christoph von Sethe ◽  
...  

Abstract To protect the copper liners of liquid-fuel rocket combustion chambers, a thermal barrier coating can be applied. Previously, a new metallic coating system was developed, consisting of a NiCuCrAl bond-coat and a Rene 80 top-coat, applied with high velocity oxyfuel spray (HVOF). The coatings are tested in laser cycling experiments to develop a detailed failure model, and critical loads for coating failure were defined. In this work, a coating system is designed for a generic engine to demonstrate the benefits of TBCs in rocket engines, and the mechanical loads and possible coating failure are analysed. Finally, the coatings are tested in a hypersonic wind tunnel with surface temperatures of 1350 K and above, where no coating failure was observed. Furthermore, cyclic experiments with a subscale combustion chamber were carried out. With a diffusion heat treatment, no large-scale coating delamination was observed, but the coating cracked vertically due to large cooling-induced stresses. These cracks are inevitable in rocket engines due to the very large thermal-strain differences between hot coating and cooled substrate. It is supposed that the cracks can be tolerated in rocket-engine application.


Sign in / Sign up

Export Citation Format

Share Document