This paper presents a theoretical investigation of the development of the boundary layer about a ship. The "outer flow" conditions, including the streamlines and pressure distributions, are found from linearized, thin-ship theory using the method of Guilloton. Linearized, integral boundary-layer equations appropriate for three-dimensional turbulent flow are integrated numerically along the streamlines to determine the momentum thickness, the shape factor, and the angle of the boundary-layer flow to the outer flow. The results of computations for Series 60, block 0.60 and 0.80 are presented for various Froude numbers and ship lengths.