Hydrogen Storage Technologies - A Tutorial with Perspectives from the US National Program

Author(s):  
Ned T. Stetson ◽  
Larry S. Blair
Challenges ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 13 ◽  
Author(s):  
Stavros Lazarou ◽  
Sofoklis Makridis

2019 ◽  
Vol 16 (1) ◽  
pp. 299-325
Author(s):  
Atef Elmahdy ◽  
Hayam Taha ◽  
Mohamed Kamel ◽  
Menna Tarek

The influence of mechanical bending to tuning the hydrogen storage of Ni-functionalized of zigzag type of boron nitride nanotubes (BNNTs) has been investigated using density functional theory (DFT) with reference to the ultimate targets of the US Department of Energy (DOE). Single Ni atoms prefer to bind strongly at the axial bridge site of BN nanotube, and each Ni atom bound on BNNT may adsorb up to five, H2 molecules, with average adsorption energies per hydrogen molecule of )-1.622,-0.527 eV( for the undeformed B40N40-? = 0 , ) -1.62 , 0-0.308 eV( for the deformed B40N40-? = 15, ) -1.589,  -0.310 eV( for the deformed B40N40-? = 30, and ) -1.368-  -0.323 eV( for the deformed B40N40-? = 45 nanotubes respectively. with the H-H bonds between H2 molecules significantly elongated. The curvature attributed to the bending angle has effect on average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.691 wt % for 5H2 Ni B40N40-? = 0, 15, 30, 45. While the desorption activation barriers of the complexes nH2 + Ni B40N40-? = 0 (n = 1-4) are outside the (DOE) domain (-0.2 to -0.6 eV), the complexes nH2 + Ni- B40N40-? = 0 (n = 5) is inside this domain. For nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 1-2) are outside the (DOE) domain, the complexes nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 3-5) are inside this domain. The hydrogen storage of the irreversible 4H2+ Ni- B40N40-? = 0, 2H2+ Ni- B40N40-? = 15, 30, 45 and reversible 5H2+ Ni- B40N40-? = 0, 3H2+ Ni- B40N40-? = 15, 30, 45 interactions are characterized in terms of density of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials. Our calculations expect that 5H2- Ni- B40N40-j = 0, 15, 30, 45 complexes are promising hydrogen storage candidates.


2021 ◽  
pp. 1-27
Author(s):  
Esteban R. Ugarte ◽  
Saeed Salehi

Abstract Renewable energy production is limited by the fluctuations limiting their application. Underground Hydrogen Storage (UHS) is one possible alternative to reduce the gap between supply and demand by storing the energy converted to hydrogen as a carrier and store it during surplus to produce it during high demand periods. The hydrogen is stored in the subsurface in geological formations containing the gas and is injected/produced via wells. There is a lack of experience associated with this technology and only a small number of projects worldwide. There are several mechanisms that can compromise the integrity of the well and generate leakage of the stored gas. This paper aims to introduce the challenges associated with well integrity of UHS. Mechanisms that can compromise well integrity and generate leaks include microbial corrosion, hydrogen blistering hydrogen induced cracking and hydrogen embrittlement, cement degradation, elastomer failure, and caprock sealing failure. Propose well completion criteria, recommendation, and materials selection for newly constructed wells or existing wells. A comparison with more developed storage technologies aims to provide a better understanding of the limitations of hydrogen storage by comparing it to carbon dioxide (Carbon Capture and Storage) and methane (Underground Gas Storage). Finally, evaluation and monitoring techniques are required to see the influence of hydrogen on well integrity. Future research and development will reduce the uncertainties and limitations associated with UHS increasing its feasibility and implementation.


Author(s):  
Martin Quin˜ones ◽  
Steve Mason ◽  
Allan Green

The US Navy has pursued gas turbine electric start systems since 2003. Such a system has been extensively tested at the Naval Surface Warfare Center, Carderock Division (NSWCCD) Land Based Engineering Site (LBES) in Philadelphia, PA. It was demonstrated on a General Electric (GE) LM2500 main propulsion engine as well as a Rolls Royce (RR) MT30 engine. Presently, the system is being refined and repackaged to undergo U.S. Navy qualification for production use. Given the performance success of electric start the next logical step is to extend its application to other engine lines such as the Ship Service Gas Turbine Generators (SSGTG). In order to facilitate platform integration, the electric start concept has been evolved into the Electric Start and Generation System (ESGS). As expected, this system has the ability to start a gas turbine by purely electrical means. Once the engine has reached idle speed or above, the ESGS becomes a generator capable of producing power. This power may be harnessed to address dark start capability on Surface Combatants. The ESGS configuration simplifies integration of bulk energy storage such as a flywheel device or battery pack. This will ensure availability to the engine under a loss of platform power scenario thus providing self-sustainability to all the gas turbine’s electrical functions. Another alternative is to continuously provide ESGS generated power back to the electrical grid in continuous support of the engine auxiliary systems. In this case, flywheels and batteries may be replaced by advanced transfer switches that redirect power where it is needed on demand. This paper describes a program undertaken by NSWCCD to carry out land based testing of an advanced design ESGS. An overview of system requirements is given from a perspective of platform integration. The system architecture is fully described. It is an evolution of ESGS technology that has been extensively tested on RR MT30 and GE LM2500 gas turbines at NSWCCD LBES. Compared with existing air and alternative hydraulic gas turbine starter systems, this system is more compact and provides the benefits of simplified platform integration. It incorporates energy storage to provide black start capability for the gas turbine. Battery and inertial energy storage technologies are discussed in detail for use with the ESGS.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
M. Kunowsky ◽  
J. P. Marco-Lózar ◽  
A. Linares-Solano

A hydrogen economy is needed, in order to resolve current environmental and energy-related problems. For the introduction of hydrogen as an important energy vector, sophisticated materials are required. This paper provides a brief overview of the subject, with a focus on hydrogen storage technologies for mobile applications. The unique properties of hydrogen are addressed, from which its advantages and challenges can be derived. Different hydrogen storage technologies are described and evaluated, including compression, liquefaction, and metal hydrides, as well as porous materials. This latter class of materials is outlined in more detail, explaining the physisorption interaction which leads to the adsorption of hydrogen molecules and discussing the material characteristics which are required for hydrogen storage application. Finally, a short survey of different porous materials is given which are currently investigated for hydrogen storage, including zeolites, metal organic frameworks (MOFs), covalent organic frameworks (COFs), porous polymers, aerogels, boron nitride materials, and activated carbon materials.


2009 ◽  
Vol 34 (22) ◽  
pp. 9173-9180 ◽  
Author(s):  
Pietro Di Profio ◽  
Simone Arca ◽  
Federico Rossi ◽  
Mirko Filipponi

Sign in / Sign up

Export Citation Format

Share Document